

Press Release 5 April 2017

Chunderloo Sale to RNI NL

Westgold Resources Limited (**Westgold**) is pleased to refer to the ASX Announcement entitled 'Copper-Gold Resource Acquisition' released by RNI NL (**RNI**) today regarding the sale of the Chunderloo Copper-Gold Project to RNI.

In a two part deal, Westgold has agreed to vend the Chunderloo Coppper-Gold Project and release RNI from a right of first refusal held by Westgold over some tenements held by RNI in return for 5 million RNI shares.

The deal represents a constructive consolidation of tenure for both RNI and Westgold as we focus on our respective projects in the region.

RNI's announcement is attached to this release.

Enquiries

Peter Cook | Managing Director peter.cook@westgold.com.au

Rod Corps | Manager – Investor Relations rod.corps@westgold.com.au

ASX Announcement 5 April 2017

COPPER-GOLD RESOURCE ACQUISITION

HIGHLIGHTS

- RNI acquires the Chunderloo Gold Project from Westgold Resources Limited (ASX: WGX)
- Chunderloo is highly prospective for copper-gold mineralisation and contains a non-JORC compliant resource of 22,000t @ 5.4g/t Au and 1.6% Cu (Chunderloo Prospect M51/79)
- Mineralisation at Chunderloo is open down-plunge and a key objective is to extend the known resource while carrying out metallurgical test work
- Exploration planning will commence immediately

RNI NL (ASX:RNI) (to be renamed Auris Minerals Limited) has added a known copper-gold resource to its exploration portfolio with the acquisition of the Chunderloo Mining tenements (M51/79, M51/638 and M51/639) from WGX's Central Murchison Gold Project (CMGP) (Figure 1).

Total consideration for the acquisition is 5 million RNI shares and the agreement also results in the removal of the WGX Right of First Refusal (previously held by Metals X Limited) across RNI tenements in the Bryah Basin.

The mining tenements that form the Chunderloo Gold Project are positioned 19km south/west of Meekatharra and 5km west of the Bluebird Gold Processing Plant and comprise $14.05 \, \text{km}^2$ of highly prospective VMS tenure (Figure 1) which currently holds a non-JORC compliant copper-gold resource of $22,000t \, @ \, 5.4g/t \, \text{Au}$ and $1.6\% \, \text{Cu}$ (Chunderloo Prospect - M51/79).

This mineralisation contains significant intercepts of copper (8 metres @ 7.41%), gold (17 metres @ 12.99g/t) and silver (5 metres @ 16.64g/t) and is currently open at depth, down-plunge (Figures 3 & 4).

RNI believes the strategic acquisition of a known resource strengthens and compliments the Company's highly-strategic Bryah Basin asset portfolio.

RNI Executive Director, Debbie Fullarton said "This is a very good opportunity for us to cost-effectively add a highly prospective project that sits very well alongside the Bryah Basin portfolio. We will able to move quickly to add value to this project by following up and expanding on the historical work that has already been undertaken."

During the acquisition process of the Chunderloo Tenements, RNI has systematically reviewed all available data and believes that there is significant potential in developing an economic JORC compliant copper-gold-silver resource. This is based on the following parameters:

- A geochemical review of the historic drilling by Dr Nigel Brand has deemed that a large proportion of the RAB drilling across the tenement was poorly sampled and thus deemed ineffective.
- There are 185 drill holes >10m with an average depth of 39m (maximum of 119m) suggesting that the area is poorly explored.
- There has not been a full suite of pathfinder elements or alteration studies completed on the drilling at Chunderloo.
- There are limited base datasets from the Chunderloo area. This includes a lack of detailed mapping
 and ground geophysical survey information. Given the advances in technology and the fact that the
 historic IP survey identified known copper-gold mineralisation, RNI believes that this is the best tool
 in identifying mineralisation at depth and to advance the current resource.
- Metallurgical test work completed by Aquarius Exploration in 1993 determined that conventional gold processing techniques (CIP) was ineffective in recovering the gold given the large amount of copper in the system. Given the description of past drilling, RNI believes that the material should be amenable to flotation, providing the flotation concentrate is treated as a copper ore and a premium recovered for contained precious metal.

The Chunderloo Mining Tenements are positioned 19km south/west of Meekatharra and 5km west of the Bluebird Gold Processing Plant (Figure 1).

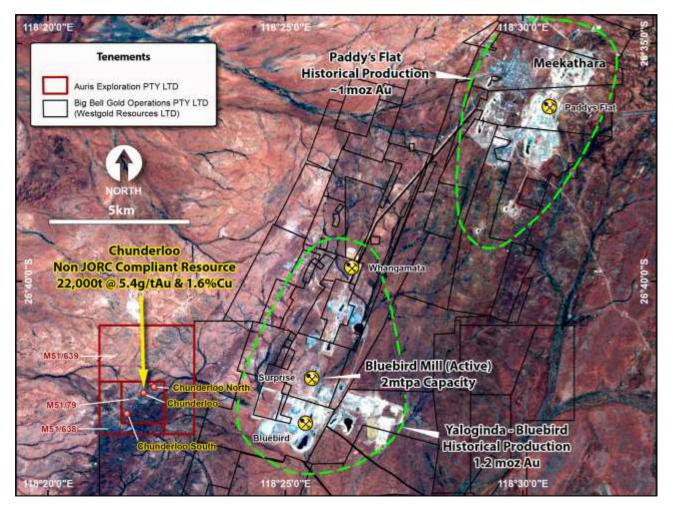


Figure 1: The Chunderloo Mining Tenements in relation to the Bluebird Mill and actively mined gold deposits within (Westgold Resources Ltd's CMGP)

Historic exploration over this project area was heavily focused on the shallow open pit gold potential given the close proximity to the Bluebird Mill. Metallurgical test work completed by Aquarius Exploration in 1993 determined that using conventional gold processing techniques (CIP) was ineffective in recovering the gold, given the large amount of copper in the system. RNI believes that the material should be amenable to flotation, based on the description of historic drilling, provided the flotation concentrate is treated as a copper ore and a premium is recovered for the contained precious metal.

The first step for RNI is to extend the known resource at Chunderloo down-plunge, while testing the Chunderloo North prospect at depth (Figures 2 & 5). Given the style of mineralisation a 3D dipole-dipole IP survey will be carried out across both prospects to aid targeting. Planning for this geophysical survey is currently underway.

Prior to the discovery of the Golden Grove VMS copper deposits, Chunderloo historically was the third largest copper producer in the Murchison. The Chunderloo area (M51/79) contains two significant groups of workings, the southern workings (Chunderloo South Prospect) exploited copper in the oxide and transitional zones while the northern group of workings (Chunderloo Prospect) are the most significant with more than 7 shafts and two small open pits exploiting copper in the oxide zone. The Department of Mines and Petroleum records accounts for production from Chunderloo of 980 tonnes of ore grading 27.63g/t gold and 2.72% copper. This mineralisation is located within a band of amphibolite adjacent to the western margins of the greenstone belt.

In more recent times, Aquarius Exploration in conjunction with Endeavour Resources explored the Chunderloo tenements (Figure 2) between 1985 and 1994 drilling a total of 135 RC holes (average depth of 39 metres), 1 diamond hole (69.7 metres) and 760 RAB holes (average depth of 3 metres) (Appendix 1 – Table 1). The RC samples were mainly analysed for copper and gold with only 17 RC holes being analysed for silver.

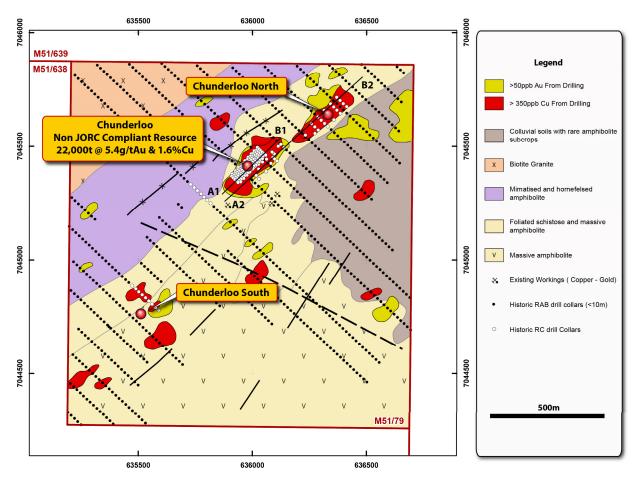


Figure 2: The Chunderloo Mining Tenement M51/79 in relation to known copper-gold mineralisation from historic drilling and underlying geology.

The results from the drilling in and around the Chunderloo Prospect indicated that high grade copper is associated with high grade gold (5 - 70g/t) and where assayed high grade silver (5-30g/t). The best intersections from the RC drilling include **8 metres @ 7.41% Cu, 17 metres @ 12.99g/t Au** and **5 metres @ 16.64g/t Ag**. A full table of results can be found in Appendix 2, Table 1).

High grade Cu-Au +/- Ag mineralisation from the Chunderloo Prospect is evident as a shallow north-easterly plunging shoot within a lower grade halo (Figures 3 & 4).

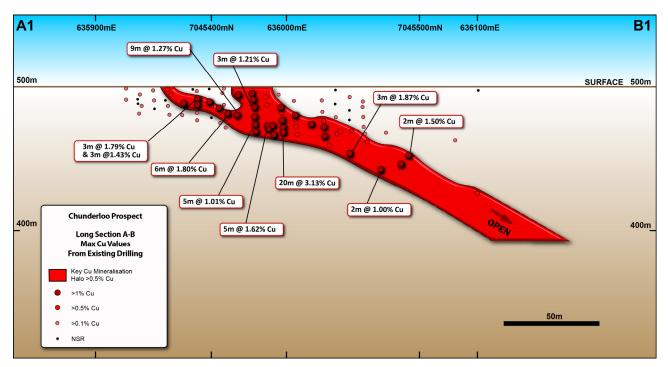


Figure 3: Significant copper intercepts from historic drilling at the Chunderloo Prospect. Mineralisation is plunging to the north east and is open at depth. Non-JORC compliant resource of 22,000t @ 1.6% Cu.

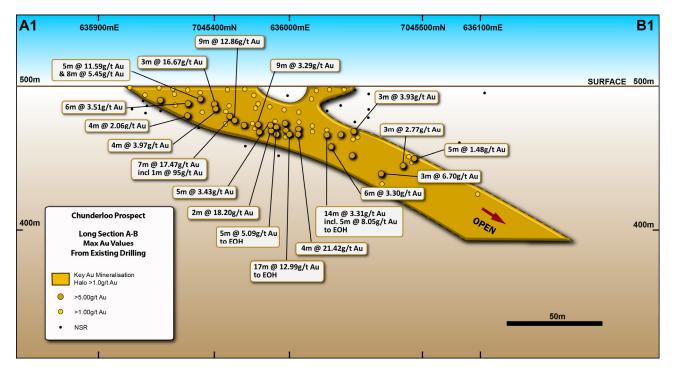


Figure 4: Significant gold intercepts from historic drilling at the Chunderloo Prospect. Mineralisation is plunging to the north east and is open at depth. A Non-JORC compliant resource of 22,000t @ 5.4g/t.

A resultant measured non-JORC compliant resource was calculated by Mercator Metals Pty Ltd (commissioned on behalf of Aquarius Exploration) to be 22,000t @ 5.4g/t Au and 1.6% Cu using a 15g/t Au top cut and an SG value of 2.7g/cm3. The results used in this resource calculation can be found in Appendix 3 – Table 1. The silver content of the resource is unknown due to the lack of assay data.

In 1986, Endeavour Resources commissioned Scintrex Pty Ltd to conduct a series of IP geophysical surveys over the Chunderloo area. The results from this survey found that the IP response correlated well with the known mineralisation at Chunderloo and a separate anomaly to the north could be seen in the data. This northern anomaly (Chunderloo North) was drilled with shallow RC by Mercator Gold Australia Pty Ltd in 2008 (Figure 2) and returned anomalous gold (>0.5g/t) and copper (>0.1%). Anomalous assay results from this drilling can be found in Appendix 2 – Table 2 (silver was not analysed).

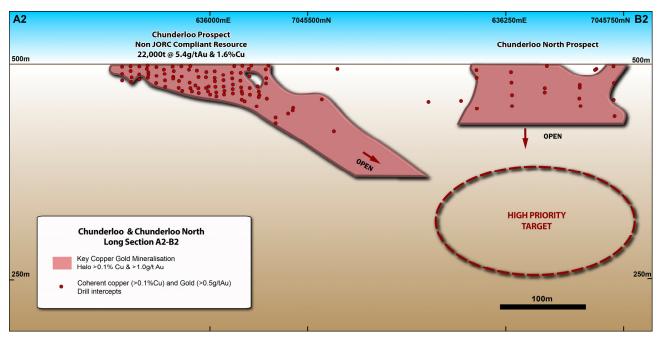


Figure 5: Coherent copper (>0.1%) and gold (>0.5g/t Au) from the Chunderloo and Chunderloo North Prospects (IP survey area)

For and on behalf of the Board.

DEBBIE FULLARTON EXECUTIVE DIRECTOR

ABOUT RNI NL

RNI NL is exploring for high-grade VMS copper-gold discoveries in Western Australia's highly-prospective Bryah Basin region and recently acquired Chunderloo area.

RNI has consolidated a 1,433km² copper-gold exploration portfolio in the Bryah Basin divided into five well-defined project areas – Forrest, Doolgunna, Morck's Well, Cashmans and Horseshoe Well. The Company's exploration focus is on VMS horizons identified at the Forrest-Wodger-Big Billy trend, the Cuba and Orient-T10 prospects

RNI's recent Chunderloo Mining Tenement acquisition consists of three mining leases that account for 14.05 km² of highly prospective VMS tenure which currently holds a non-JORC compliant copper-gold resource of 22,000t @ 5.4g/t Au and 1.6% Cu at the Chunderloo Project.

RNI's tenements (Figure 6) are held as follows:

- i. RNI 80%; Fe Ltd 20% (Fe Ltd (ASX:FEL) interest is free carried until a Decision to Mine)
- ii. Westgold Resources Ltd (ASX:WGX) own the gold rights over the RNI interest.
- iii. Omni Projects Tenements RNI has an 85% beneficial interest in these tenements
- iv. Omni Projects JV RNI is earning an 85% interest in this tenement
- v. Northern Star Resources JV RNI is earning a 70% interest in these tenements

Figure 6: RNI's copper-gold exploration and mining portfolio with highly prospective target locations

Competent Person's Statement

Information in this announcement that relates to exploration results is based on and fairly represents information and supporting documentation prepared and compiled by Richard Pugh BSc (Hons) who is a Member of the Australasian Institute of Mining and Metallurgy.

The information in this announcement that relates to previously released exploration was first disclosed under the JORC Code 2004. It has not been updated to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported and is based on and fairly represents information and supporting documentation prepared and compiled by Richard Pugh BSc (Hons) who is a Member of the Australasian Institute of Mining and Metallurgy.

Mr Pugh is Exploration Manager for RNI NL. Mr Pugh has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves. Mr Pugh consents to the inclusion in the announcement of the matters based on this information in the form and context in which it appears.

No New Information

Except where explicitly stated, this announcement contains references to prior exploration results and Mineral Resource estimates, all of which have been cross referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the results and/or estimates in the relevant market announcement continue to apply and have not materially changed.

Forward-Looking Statements

This announcement has been prepared by RNI NL. This document contains background information about RNI NL and its related entities current at the date of this announcement. This is in summary form and does not purport to be all inclusive or complete. Recipients should conduct their own investigations and perform their own analysis in order to satisfy themselves as to the accuracy and completeness of the information, statements and opinions contained in this announcement. This announcement is for information purposes only. Neither this document nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of shares in any jurisdiction.

This announcement may not be distributed in any jurisdiction except in accordance with the legal requirements applicable in such jurisdiction. Recipients should inform themselves of the restrictions that apply in their own jurisdiction. A failure to do so may result in a violation of securities laws in such jurisdiction. This document does not constitute investment advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this representation are not intended to represent recommendations of particular investments to particular persons. Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments.

No responsibility for any errors or omissions from this document arising out of negligence or otherwise is accepted. This document does include forward-looking statements. Forward-looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of RNI NL. Actual values, results, outcomes or events may be materially different to those expressed or implied in this announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward-looking statements.

Any forward-looking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and ASX Listing Rules, RNI NL does not undertake any obligation to update or revise any information or any of the forward-looking statements in this document or any changes in events, conditions or circumstances on which any such forward-looking statement is based.

Appendix 1 – Historic Chunderloo and Chunderloo North Drill Collars Table 1: Drillhole Information Summary

B	11.1.15	Hole	ı	1GA94_50		D'-	A -!	ЕОН
Prospect	Hole_ID	Туре	East	North	RL	Dip	Azimuth	Depth
Chunderloo	DHC1	DDH	636042	7045434	500	-60	313	70
Chunderloo	08CHRC001	RC	635996	7045436	500	-90	0	34
Chunderloo	08CHRC002	RC	636094	7045467	500	-60	313	119
Chunderloo	11CHRC001	RC	636087	7045474	500	-60	313	64
Chunderloo	11CHRC002	RC	636099	7045462	500	-60	313	94
Chunderloo	11CHRC019	RC	636125	7045507	500	-60	313	80
Chunderloo	11CHRC020	RC	636139	7045493	500	-60	313	100
Chunderloo	15CHRC001	RC	636028	7045420	500	-60	313	60
Chunderloo	15CHRC002	RC	636063	7045442	500	-60	313	70
Chunderloo	15CHRC003	RC	636035	7045449	500	-60	313	70
Chunderloo	15CHRC004	RC	636091	7045449	500	-60	313	90
Chunderloo	15CHRC005	RC	636098	7045443	500	-60	313	90
Chunderloo	15CHRC006	RC	636108	7045434	500	-60	313	100
Chunderloo	15CHRC007	RC	636114	7045499	500	-60	313	97
Chunderloo	PDH-C01	RC	635972	7045397	500	-60	313	33
Chunderloo	PDH-C02	RC	635980	7045390	500	-60	313	31
Chunderloo	PDH-C03	RC	635987	7045383	500	-60	313	35
Chunderloo	PDH-C04	RC	635987	7045412	500	-60	313	27
Chunderloo	PDH-C05	RC	635994	7045405	500	-60	313	34
Chunderloo	PDH-C06	RC	636001	7045398	500	-60	313	41
Chunderloo	PDH-C07	RC	635998	7045424	500	-60	313	29
Chunderloo	PDH-C08	RC	636005	7045417	500	-60	313	36
Chunderloo	PDH-C09	RC	636012	7045410	500	-60	313	42
Chunderloo	PDH-C10	RC	636037	7045452	500	-60	313	38
Chunderloo	PDH-C11	RC	636045	7045430	500	-90	0	41
Chunderloo	PDH-C12	RC	636028	7045399	500	-60	313	60
Chunderloo	PDH-C13	RC	636061	7045389	500	-60	313	55
Chunderloo	PDH-C14	RC	636030	7045356	500	-60	313	39
Chunderloo	PDH-C15	RC	636017	7045371	500	-60	313	57
Chunderloo	PDH-C16	RC	636048	7045459	500	-60	313	47
Chunderloo	PDH-C17	RC	636083	7045425	500	-60	313	58
Chunderloo	PHC001	RC	635995	7045465	500	-60	313	21
Chunderloo	PHC002	RC	636003	7045458	500	-60	313	26
Chunderloo	PHC003	RC	636010	7045451	500	-60	313	39
Chunderloo	PHC004	RC	636017	7045444	500	-60	313	51
Chunderloo	PHC005	RC	636024	7045437	500	-60	313	48
Chunderloo	PHC006	RC	636031	7045430	500	-60	313	20
Chunderloo	PHC007	RC	635992	7045454	500	-60	313	27
Chunderloo	PHC008	RC	635999	7045447	500	-60	313	39

Drechast	Uala ID	Hole	l l	4GA94_50		D:-	Awimanth	ЕОН	
Prospect	Hole_ID	Туре	East	North	RL	Dip	Azimuth	Depth	
Chunderloo	PHC009	RC	636006	7045441	500	-60	313	39	
Chunderloo	PHC010	RC	636013	7045434	500	-60	313	45	
Chunderloo	PHC011	RC	636020	7045427	500	-60	313	51	
Chunderloo	PHC012	RC	635981	7045450	500	-60	313	21	
Chunderloo	PHC013	RC	635988	7045444	500	-60	313	33	
Chunderloo	PHC014	RC	635996	7045437	500	-60	313	33	
Chunderloo	PHC015	RC	636003	7045430	500	-60	313	39	
Chunderloo	PHC016	RC	636010	7045423	500	-60	313	51	
Chunderloo	PHC017	RC	636017	7045416	500	-60	313	51	
Chunderloo	PHC018	RC	635978	7045440	500	-60	313	27	
Chunderloo	PHC019	RC	635985	7045433	500	-60	313	27	
Chunderloo	PHC020	RC	635992	7045426	500	-60	313	39	
Chunderloo	PHC021	RC	635999	7045419	500	-60	313	45	
Chunderloo	PHC022	RC	636007	7045412	500	-60	313	45	
Chunderloo	PHC023	RC	635967	7045435	500	-60	313	21	
Chunderloo	PHC024	RC	635975	7045429	500	-60	313	21	
Chunderloo	PHC025	RC	635982	7045422	500	-60	313	27	
Chunderloo	PHC026	RC	635989	7045415	500	-60	313	39	
Chunderloo	PHC027	RC	635996	7045408	500	-60	313	39	
Chunderloo	PHC028	RC	636004	7045401	500	-60	313	45	
Chunderloo	PHC029	RC	635965	7045425	500	-60	313	21	
Chunderloo	PHC030	RC	635973	7045417	500	-60	313	21	
Chunderloo	PHC031	RC	635979	7045411	500	-60	313	33	
Chunderloo	PHC032	RC	635986	7045405	500	-60	313	39	
Chunderloo	PHC033	RC	635993	7045398	500	-60	313	39	
Chunderloo	PHC034	RC	635954	7045421	500	-60	313	21	
Chunderloo	PHC035	RC	635961	7045414	500	-60	313	21	
Chunderloo	PHC036	RC	635968	7045408	500	-60	313	27	
Chunderloo	PHC037	RC	635975	7045401	500	-60	313	39	
Chunderloo	PHC038	RC	635983	7045394	500	-60	313	33	
Chunderloo	PHC039	RC	635990	7045387	500	-60	313	45	
Chunderloo	PHC040	RC	635951	7045411	500	-60	313	21	
Chunderloo	PHC041	RC	635958	7045404	500	-60	313	22	
Chunderloo	PHC042	RC	635965	7045397	500	-60	313	33	
Chunderloo	PHC043	RC	635972	7045390	500	-60	313	27	
Chunderloo	PHC044	RC	635980	7045383	500	-60	313	39	
Chunderloo	PHC045	RC	635940	7045407	500	-60	313	21	
Chunderloo	PHC046	RC	635949	7045399	500	-60	313	21	
Chunderloo	PHC047	RC	635955	7045393	500	-60	313	27	
Chunderloo	PHC048	RC	635961	7045387	500	-60	313	27	
Chunderloo	PHC049	RC	635969	7045380	500	-60	313	30	
Chunderloo	PHC050	RC	635977	7045372	500	-60	313	39	

D	II.I. ID	Hole	ı	4GA94_50		D:	A = !	ЕОН
Prospect	Hole_ID	Туре	East	North	RL	Dip	Azimuth	Depth
Chunderloo	PHC051	RC	635937	7045396	500	-60	313	21
Chunderloo	PHC052	RC	635944	7045390	500	-60	313	21
Chunderloo	PHC053	RC	635951	7045383	500	-60	313	21
Chunderloo	PHC054	RC	635958	7045376	500	-60	313	27
Chunderloo	PHC055	RC	635965	7045369	500	-60	313	34
Chunderloo	PHC056	RC	635927	7045392	500	-60	313	21
Chunderloo	PHC057	RC	635934	7045385	500	-60	313	21
Chunderloo	PHC058	RC	635941	7045379	500	-60	313	21
Chunderloo	PHC059	RC	635948	7045372	500	-60	313	21
Chunderloo	PHC060	RC	635955	7045365	500	-60	313	27
Chunderloo	PHC061	RC	635963	7045358	500	-60	313	39
Chunderloo	PHC062	RC	635923	7045382	500	-60	313	15
Chunderloo	PHC063	RC	635930	7045375	500	-60	313	15
Chunderloo	PHC064	RC	635938	7045368	500	-60	313	15
Chunderloo	PHC065	RC	635946	7045361	500	-60	313	21
Chunderloo	PHC066	RC	635952	7045354	500	-60	313	31
Chunderloo	PHC067	RC	635913	7045378	500	-60	313	15
Chunderloo	PHC068	RC	635920	7045371	500	-60	313	15
Chunderloo	PHC069	RC	635927	7045365	500	-60	313	15
Chunderloo	PHC070	RC	635934	7045358	500	-60	313	15
Chunderloo	PHC071	RC	635942	7045350	500	-60	313	27
Chunderloo	PHC072	RC	635949	7045343	500	-60	313	33
Chunderloo	PHC073	RC	635910	7045367	500	-60	313	15
Chunderloo	PHC074	RC	635917	7045361	500	-60	313	9
Chunderloo	PHC075	RC	635924	7045354	500	-60	313	15
Chunderloo	PHC076	RC	635931	7045347	500	-60	313	21
Chunderloo	PHC077	RC	635938	7045340	500	-60	313	27
Chunderloo	PHC097	RC	636006	7045469	500	-60	313	27
Chunderloo	PHC098	RC	636013	7045462	500	-60	313	33
Chunderloo	PHC099	RC	636020	7045455	500	-60	313	39
Chunderloo	PHC100	RC	636027	7045448	500	-60	313	45
Chunderloo	PHC101	RC	636035	7045441	500	-60	313	51
Chunderloo	PHC102	RC	636009	7045479	500	-60	313	21
Chunderloo	PHC103	RC	636016	7045472	500	-60	313	27
Chunderloo	PHC104	RC	636023	7045465	500	-60	313	33
Chunderloo	PHC105	RC	636030	7045459	500	-60	313	37
Chunderloo	PHC106	RC	636037	7045452	500	-60	313	51
Chunderloo	PHC107	RC	636045	7045445	500	-60	313	51
Chunderloo	PHC108	RC	636019	7045483	500	-60	313	21
Chunderloo	PHC109	RC	636026	7045476	500	-60	313	27
Chunderloo	PHC110	RC	636033	7045469	500	-60	313	39
Chunderloo	PHC111	RC	636041	7045463	500	-60	313	45

		Hole		4GA94_50			A	ЕОН
Prospect	Hole_ID	Туре	East	North	RL	Dip	Azimuth	Depth
Chunderloo	PHC112	RC	636048	7045455	500	-60	313	51
Chunderloo	PHC113	RC	636022	7045494	500	-60	313	21
Chunderloo	PHC114	RC	636030	7045487	500	-60	313	27
Chunderloo	PHC115	RC	636037	7045480	500	-60	313	39
Chunderloo	PHC116	RC	636044	7045473	500	-60	313	45
Chunderloo	PHC117	RC	636051	7045466	500	-60	313	51
Chunderloo	PHC118	RC	636058	7045460	500	-60	313	57
Chunderloo North	08CHRC003	RC	636233	7045549	500	-60	313	63
Chunderloo North	08CHRC004	RC	636275	7045557	500	-60	313	66
Chunderloo North	PHC078	RC	636288	7045628	500	-60	313	60
Chunderloo North	PHC079	RC	636302	7045614	500	-60	313	57
Chunderloo North	PHC080	RC	636317	7045600	500	-60	313	69
Chunderloo North	PHC081	RC	636331	7045587	500	-60	313	75
Chunderloo North	PHC082	RC	636315	7045657	500	-60	313	51
Chunderloo North	PHC083	RC	636329	7045643	500	-60	313	63
Chunderloo North	PHC084	RC	636343	7045630	500	-60	313	69
Chunderloo North	PHC085	RC	636358	7045616	500	-60	313	63
Chunderloo North	PHC086	RC	636343	7045686	500	-60	313	57
Chunderloo North	PHC087	RC	636357	7045672	500	-60	313	63
Chunderloo North	PHC088	RC	636371	7045658	500	-60	313	63
Chunderloo North	PHC089	RC	636386	7045644	500	-60	313	69
Chunderloo North	PHC090	RC	636370	7045715	500	-60	313	63
Chunderloo North	PHC091	RC	636385	7045701	500	-60	313	63
Chunderloo North	PHC092	RC	636399	7045687	500	-60	313	63
Chunderloo North	PHC093	RC	636414	7045673	500	-60	313	75
Chunderloo North	PHC094	RC	636259	7045599	500	-60	313	57
Chunderloo North	PHC095	RC	636274	7045585	500	-60	313	63
Chunderloo North	PHC096	RC	636289	7045571	500	-60	313	66

Appendix 2 – M51/79 Historic RC and DDH Drill Assay Results Table 1: Chunderloo Prospect Results

Hole ID	Element	Value	Depth	1	Intercept (m)	Result	Intercept Summary
			From	То			
	Cu	%	44	46	2	0.34	2 metres @ 0.34% Cu from 44 metres
DHC1	Au	g/t	45	46	1	0.16	1 metre @ 0.16g/t Au from 45 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	26	33	7	0.53	7 metres @ 0.53% Cu from 26 metres
08CHRC001	Au	g/t	26	34	8	4.71	8 metres @ 0.71g/t Au from 26 metres
	Ag	g/t	26	33	7	18.16	7 metres @ 18.16g/t Ag from 26 metres
	Cu	%	60	63	3	0.29	3 metres @ 0.29% Cu from 60 metres
08CHRC002	Au	g/t	60	66	6	0.84	6 metres @ 0.64g/t Au from 60 metres
	Ag	g/t	60	63	3	3.03	3 metres @ 3.03g/t Ag from 60 metres
	Cu	%	56	61	5	0.90	5 metres @ 0.90% Cu from 56 metres Including 2 metres @ 1.50% Cu
11CHRC001	Au	g/t	56	61	5	1.48	5 metres @ 1.48g/t Au from 56 metres
	Ag	g/t	56	61	5	4.22	5 metres @ 4.22g/t Ag from 56 metres
	Cu	%	64	67	3	0.45	3 metres @ 0.45% Cu from 64 metres Including 1 metre @ 1.01% Cu
			72	76	4	0.37	4 metres @ 0.37% Cu from 72 metres
	Au	g/t	27	28	1	3.09	1 metre @ 3.09g/t Au from 27 metres
			58	59	1	0.12	1 metre @ 0.12g/t Au from 58 metres
11CHRC002			64	67	3	2.77	3 metres @ 2.77g/t Au from 64 metres
	Ag	g/t	17	18	1	1.10	1 metre @ 1.10g/t Ag from 17 metres
			27	28	1	1.10	1 metre @ 1.10g/t Ag from 27 metres
			34	38	4	3.95	4 metres @ 3.95g/t Ag from 34 metres
			65	67	2	4.95	2 metres @ 4.95g/t Ag from 65 metres
			73	75	2	1.20	2 metres @ 1.20g/t Ag from 73 metres
	Cu	%	-	-	-	-	NSR
11CHRC019	Au	g/t	-	-	-	-	NSR
	Ag	g/t	-	-	-	-	NSR
	Cu	%	88	90	2	0.60	2 metres @ 0.60% Cu from 88 metres
11CHRC020	Au	g/t	88	90	2	1.96	2 metres @ 1.96g/t Au from 88 metres
	Ag	g/t	39	41	2	2.80	2 metres @ 2.80g/t Ag from 39 metres
			88	90	2	3.80	2 metres @ 3.80g/t Ag from 88 metres
	Cu	%	40	44	4	0.14	4 metres @ 0.14% Cu from 40 metres
15CHRC001	Au	g/t	-	-	-	-	NSR
	Ag	g/t	-	-	-	-	NSR
	Cu	%	0	8	8	0.14	8 metres @ 0.14% Cu from surface
			53	56	3	1.87	3 metres @ 1.87% Cu from 53 metres
			57	58	1	0.13	1 metre @ 0.13% Cu from 57 metres
15CHRC002	Au	g/t	0	4	4	0.19	4 metres @ 0.19g/t Au from surface
· · · · · · · · · · · · ·			53	56	3	3.30	3 metres @ 3.30g/t Au from 53 metres
			57	58	1	0.21	1 metre @ 0.21g/t Au from 57 metres
	Ag	g/t	28	32	4	7.00	4 metres @ 7.00g/t Ag from 28 metres
		-	54	56	2	23.50	2 metres @ 23.50g/t Ag from 54 metres
			61	62	1	16.00	1 metre @ 16.00g/t Ag from 61 metres

			Depth	(m)	Intercept		
Hole ID	Element	Value	From	То	(m)	Result	Intercept Summary
	Cu	%	45	49	4	0.52	4 metres @ 0.52% Cu from 45 metres
15CHRC003	Au	g/t	45	51	6	3.30	6 metres @ 3.30g/t Au from 45 metres
	Ag	g/t	48	49	1	7.00	1 metre @ 7.00 g/t Ag from 48 metres
	Cu	%	60	63	3	0.15	3 metres @ 0.15% Cu from 60 metres
			66	72	6	0.45	6 metres @ 0.45% Cu from 66 metres
15CHRC004	Au	g/t	68	71	3	6.70	3 metres @ 6.70g/t Au from 68 metres
	Ag	g/t	68	70	2	8.50	2 metres @ 8.50g/t Ag from 68 metres
	Cu	%	32	40	8	0.16	8 metres @ 0.16% Cu from 32 metres
			76	80	4	0.16	4 metres @ 0.16% Cu from 76 metres
15CHRC005	Au	g/t	32	40	8	0.16	8 metres @ 0.16g/t Au from 32 metres
			76	80	4	1.04	4 metres @ 1.04g/t Au from 76 metres
	Ag	g/t	-	-	-	-	NSR
	Cu	%	64	68	4	0.19	4 metres @ 0.19% Cu from 64 metres
15CHRC006			76	80	4	0.11	4 metres @ 0.11% Cu from 76 metres
	Au	g/t	-	-	-	-	NSR
	Ag	g/t	-	-	-	-	NSR
	Cu	%	32	33	1	0.17	1 metre @ 0.17% Cu from 32 metres
			44	46	2	0.29	2 metres @ 0.29% Cu from 44 metres
15CHRC007			84	88	4	0.19	4 metres @ 0.19% Cu from 84 metres
	Au	g/t	45	46	1	0.22	1 metre @ 0.22g/t Au from 45 metres
			84	88	4	0.11	4 metres @ 0.11g/t Au from 84 metres
	Ag	g/t	-	-	-	-	NSR
	Cu	%	17	25	8	1.41	8 metres @ 1.41% Cu from 17 metres
PDH-C01	Au	g/t	17	24	7	17.47	7 metres @ 17.47g/t Au from 17 metres including 1 metre @ 95g/t Au
	Ag	g/t	18	23	5	16.64	5 metres @ 16.64g/t Ag from 18 metres
	Cu	%	20	23	3	0.38	3 metres @ 0.38% Cu from 20 metres
PDH-C02	Au	g/t	20	23	3	1.60	3 metres @ 1.60g/t Au from 20 metres
	Ag	g/t	-	-	-	-	NSR
	Cu	%	30	32	2	0.20	2 metres @ 0.20% Cu from 30 metres
PDH-C03	Au	g/t	30	32	2	0.60	2 metres @ 0.60g/t Au from 30 metres
	Ag	g/t	_	-	-	-	NSR
	Cu	%	25	27	2	0.16	2 metres @ 0.16% Cu from 25 metres to EOH
PDH-C04	Au	g/t	25	27	2	0.39	2 metres @ 0.39g/t Au from 25 metres to EOH
	Ag	g/t	-	-	-	-	NSR
	Cu	%	28	30	2	0.35	2 metres @ 0.35% Cu from 28 metres
PDH-C05	Au	g/t	28	31	3	1.53	3 metres @ 1.53g/t Au from 28 metres
	Ag	g/t	-	_	ı	-	NSR
	Cu	%	40	41	1	0.20	1 metre @ 0.20% Cu from 40 metres
PDH-C06			33	35	2	0.28	2 metres @ 0.28% Cu from 33 metres
	Au	g/t	4	5	1	0.25	1 metre @ 0.25g/t Au from 4 metres
			33	35	2	2.65	2 metres @ 2.65g/t Au from 33 metres
	Ag	g/t	34	35	1	4.00	1 metre @ 4.00g/t Ag from 34 metres
	Cu	%	24	25	1	0.10	1 metre @ 0.10% Cu from 24 metres

Hole ID	Element	Value	Depth	(m)	Intercept	Result	Intercept Summary
HOLE ID	Etement	value	From	То	(m) ·	Result	intercept Summary
			26	28	2	0.24	2 metres @ 0.24% Cu from 26 metres
	Au	g/t	0	1	1	0.30	1 metre @ 0.30g/t Au from surface
PDH-C07			20	21	1	0.30	1 metre @ 0.30g/t Au from 20 metres
			24	25	1	0.20	1 metre @ 0.20g/t Au from 24 metres
			26	29	3	0.83	3 metres @ 0.83g/t Au from 26 metres t EOH
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	31	36	5	1.52	5 metres @ 1.52% Cu from 31 metres to EOH
PDH-C08	Au	g/t	31	36	5	5.09	5 metres @ 5.09g/t Au from 31 metres EOH
	Ag	g/t	31	36	5	10.64	5 metres @ 10.64g/t Ag from 31 metres EOH
	Cu	%	38	41	3	1.24	3 metres @ 1.24% Cu from 38 metres
PDH-C09	Au	g/t	9	10	1	0.21	1 metre @ 0.21g/t Au from 0.21g/t Au fro 9 metres
			26	27	1	0.16	1 metre @ 0.16g/t Au from 26 metres
			38	41	3	7.47	3 metres @ 7.47g/t Au from 38 metres
	Ag	g/t	38	41	3	6.23	3 metres @ 6.23g/t Ag from 38 metres
	Cu	%	37	38	1	0.71	1 metre @ 0.71% Cu from 37 metres to E
PDH-C10	Au	g/t	0	1	1	0.29	1 metre @ 0.29g/t Au from surface
			21	22	1	0.30	1 metre @ 0.30g/t Au from 21 metres
			37	38	1	6.40	1 metre @ 6.40g/t Au from 37 metres t EOH
	Ag	g/t	37	38	1	7.80	1 metre @ 7.80g/t Ag from 37 metres t EOH
	Cu	%	-	-	-	-	Not assayed
PDH-C11	Au	g/t	0	2	2	1.02	2 metres @ 1.02g/t Au from surface
			20	21	1	0.20	1 metre @ 0.20g/t Au from 20 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	-	-	Not assayed
	Au	g/t	20	21	1	0.30	1 metre @ 0.30g/t Au from 20 metres
PDH-C12			32	33	1	0.13	1 metre @ 0.13g/t Au from 32 metres
			51	55	4	0.13	4 metres @ 0.13g/t Au from 51 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	-	-	Not assayed
PDH-C13	Au	g/t	-	-	-	-	NSR
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	-	-	Not assayed
PDH-C14	Au	g/t	-	-	-	-	NSR
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	-	-	Not assayed
	Au	g/t	31	32	1	0.31	1 metre @ 0.31g/t au from 31 metres
PDH-C15			34	35	1	1.02	1 metre @ 1.02g/t Au from 34 metres
			41	44	3	0.18	3 metres @ 0.18g/t Au from 41 metres
			51	55	4	0.13	4 metres @ 0.13g/t Au from 51 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	-	-	Not assayed
	Au	g/t	3	4	1	0.13	1 metre @ 0.13g/t Au from 3 metres

			Depth	(m)	Intercept		
Hole ID	Element	Value	From	То	(m)	Result	Intercept Summary
PDH-C16			35	43	8	0.35	8 metres @ 0.35 g/t Au from 35 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	-	-	Not assayed
PDH-C17	Au	g/t	-	-	-	-	NSR
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	-	-	Not assayed
PHC001	Au	g/t	2	6	4	0.20	4 metres @ 0.20g/t Au from 2 metres
		-	9	10	1	2.82	1 metre @ 2.82g/t au from 9 metres
	Ag	g/t	-	-	=	-	Not assayed
	Cu	%	-	-	-	-	Not assayed
PHC002	Au	g/t	17	19	2	0.24	2 metres @ 0.24g/t Au from 17 metres
	Ag	g/t	_	-	_	_	Not assayed
	Cu	%	22	27	5	0.21	5 metres @ 0.21% Cu from 22 metres
PHC003	Au	g/t	23	27	4	0.18	4 metres @ 0.18g/t au from 23 metres
1110000	Ag	g/t	_	_	_	_	Not assayed
	Cu	%	26	32	6	0.49	6 metres @ 0.49% Cu from 26 metres
PHC004	Au	g/t	29	32	3	0.93	3 metres @ 0.93g/t Au from 29 metres
1110004	Ag	g/t	_	_	_	_	Not assayed
	Cu	%	0	1	1	0.79	1 metre @ 0.79% Cu from surface
	Au	g/t	0	2	2	0.90	2 metres @ 0.90g/t Au from surface
PHC005		9, 1	36	39	3	1.27	3 metres @ 1.27g/t Au from 36 metres
1110003			45	46	1	0.33	1 metre @ 0.33g/t Au from 45 metres
	Ag	g/t	_	_	_	_	Not assayed
	Cu	%	0	2	2	1.13	2 metres @ 1.13% Cu from surface
PHC006	Au	g/t	0	6	6	0.95	6 metres @ 0.95g/t Au from surface
111000	Ag	g/t	_	_	_	_	Not assayed
	Cu	%	11	13	2	0.19	2 metres @ 0.19% Cu from 11 metres
PHC007	Au	g/t	3	4	1	0.20	1 metre @ 0.20g/t Au from 3 metres
1110007		9, 1	10	13	3	0.23	3 metres @ 0.23g/t Au from 10 metres
	Ag	g/t	_	_	_	_	Not assayed
	Cu	%	18	25	7	0.41	7 metres @ 0.41% Cu from 18 metres
PHC008	Au	g/t	10	11	1	0.11	1 metre @ 0.11g/t Au from 10 metres
1110000		9, 1	14	15	1	0.17	1 metre @ 0.17g/t Au from 14 metres
			17	25	8	0.38	8 metres @ 0.38g/t Au from 17 metres
	Ag	g/t	_	_	=	_	Not assayed
	Cu	%	24	27	3	0.37	3 metres @ 0.37% Cu from 24 metres
PHC009	Au	g/t	0	1	1	0.23	1 metre @ 0.23g/t Au from surface
FIICOUT	7.0	9, 1	23	28	5	0.25	5 metres @ 0.25% Cu from 23 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	32	35	3	0.38	3 metres @ 0.38% Cu from 32 metres
PHC010	Au	g/t	0	2	2	0.11	2 metres @ 0.11% Cu from surface
FIICUIU	, (4	3, 5	32	39	7	1.73	7 metres @ 1.73g/t Au from 32 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	12	13	1	0.15	1 metre @ 0.15% Cu from 12 metres
	Ou	/0	12		'	3.13	i medie e orio/o od nom iz medies

			Depth	(m)	Intercept		
Hole ID	Element	Value	From	То	(m)	Result	Intercept Summary
			17	18	1	0.14	1 metre @ 0.14% Cu from 17 metres
PHC011			29	49	20	3.13	20 metres @ 1.13% Cu from 29 metres including 8 metres @ 7.41% Cu
	Au	g/t	0	2	2	0.39	2 metres @ 0.39g/t Au from surface
			34	51	17	12.99	17 metres @ 12.99g/t Au from 17 metres to EOH
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	35	40	5	0.22	5 metres @ 0.22% Cu from 35 metres
PHC012	Au	g/t	32	33	1	0.20	1 metre @ 0.20g/t Au from 32 metres
			37	41	4	21.42	4 metres @ 21.42g/t Au from 37 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	39	41	2	0.57	2 metres @ 0.57% Cu from 39 metres
	Au	g/t	0	7	7	0.12	7 metres @ 0.12g/t Au from surface
PHC013			38	41	3	0.73	3 metres @ 0.73g/t Au from 38 metres
			47	48	1	0.11	1 metre @ 0.11g/t Au from 47 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	19	22	3	0.32	3 metres @ 0.32% Cu from 19 metres
PHC014	Au	g/t	16	17	1	0.23	1 metre @ 0.23g/t Au from 16 metres
			19	22	3	0.19	3 metres @ 0.19g/t Au from 19 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	27	31	4	1.49	4 metres @ 1.49% Cu from 27 metres
PHC015	Au	g/t	0	1	1	0.13	1 metre @ 0.13g/t Au from surface
			27	31	4	2.83	4 metres @ 2.83g/t Au from 27 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	12	13	1	0.15	1 metre @ 0.15% Cu from 12 metres
			17	18	1	0.14	1 metre @ 0.14% Cu from 17 metres
PHC016	Au	g/t	29	49	20	3.13	20 metres @ 3.13g/t Au from 29 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	39	41	2	0.57	2 metres @ 0.57% Cu from 39 metres
	Au	g/t	0	7	7	0.12	7 metres @ 0.12g/t Au from surface
PHC017			38	41	3	0.73	3 metres @ 0.73g/t Au from 38 metres
	1	/.	47	48	1	0.11	1 metre @ 0.11g/t Au from 47 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	0	1	1	0.10	1 metre @ 0.10% Cu from surface
			6	14	8	0.28	8 metres @ 0.28% Cu from 6 metres
PHC018	Au	g/t	0	1 1/	1	0.12	1 metre @ 0.12g/t Au from surface
	Λ	/4	6	14	8	0.26	8 metres @ 0.26g/t Au from 6 metres
	Ag	g/t	-	-	-	- 0.07	Not assayed
	Cu	%	14	17	3	0.36	3 metres @ 0.36% Cu from 14 metres
PHC019	Au	g/t	14	18	4	0.66	4 metres @ 0.66g/t Au from 14 metres
	Ag	g/t	-	-	-	- 0.15	Not assayed
	Cu	%	24	25	1	0.17	1 metre @ 0.17% Cu from 24 metres
Dilagas	Au	g/t	25	26	1	0.41	1 metre @ 0.41g/t Au from 25 metres
PHC020			29	30	1	0.45	1 metre @ 0.45g/t Au from 29 metres
	٨~	~ /+	33	35	2	0.21	2 metres @ 0.21g/t Au from 33 metres
	Ag	g/t	-	_	-	-	Not assayed

			Depth	(m)	Intercept		
Hole ID	Element	Value	From	То	(m)	Result	Intercept Summary
	Cu	%	29	34	5	1.62	5 metres @ 1.62% Cu from 29 metres
PHC021	Au	g/t	0	6	6	0.23	6 metres @ 0.23g/t Au from surface
			29	43	5	3.43	5 metres @ 3.43g/t Au from 29 metres
			36	39	3	0.16	3 metres @ 0.16g/t Au from 36 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	34	38	4	0.81	4 metres @ 0.81% Cu from 34 metres
PHC022	Au	g/t	0	1	1	0.10	1 metre @ 0.10g/t Au from surface
			34	36	2	18.20	2 metres @ 18.20g/t Au from 34 metres
			41	43	2	0.15	2 metres @ 0.15g/t Au from 41 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	2	7	5	0.64	5 metres @ 0.64% Cu from 2 metres Including 1 metre @ 1.40% Cu
PHC023	Au	g/t	0	6	6	0.49	6 metres @ 0.49g/t Au from surface
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	0	1	1	0.17	1 metre @ 0.17% Cu from surface
			6	13	7	0.44	7 metres @ 0.44 % Cu from 6 metres
PHC024	Au	g/t	4	10	6	0.33	6 metres @ 0.33g/t Au from 4 metres
			13	14	1	0.26	1 metre @ 0.26g/t Au from 13 metres
			16	17	1	0.14	1 metre @ 0.14g/t Au from 16 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	16	19	3	1.21	3 metres @ 1.21% Cu from 16 metres
PHC025	Au	g/t	16	19	3	2.11	3 metres @ 2.11g/t Au from 16 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	15	19	4	0.10	4 metres @ 0.10% Cu from 15 metres
			22	25	3	0.74	3 metres @ 0.74% Cu from 22 metres Including 1 metre @ 2% Cu
PHC026			27	29	2	0.37	2 metres @ 0.37% Cu from 27 metres
	Au	g/t	0	3	3	0.26	3 metres @ 0.26g/t Au from surface
			8	16	8	0.85	8 metres @ 0.85g/t Au from 8 metres
			21	22	1	0.95	1 metre @ 0.95g/t Au from 21 metres
			34	35	1	0.20	1 metre @ 0.20g/t Au from 34 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	28	33	5	1.01	5 metres @ 1.01% Cu from 28 metres
PHC027	Au	g/t	5	6	1	0.10	1 metre @ 0.10g/t Au from 5 metres
			28	37	9	3.29	9 metres @ 3.29g/t Au from 28 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	35	39	4	0.80	4 metres @ 0.80% Cu from 35 metres
PHC028	Au	g/t	35	42	7	1.60	7 metres @ 1.60g/t Au from 35 metres
	Ag	g/t	-	-	-	_	Not assayed
	Cu	%	4	8	4	0.54	4 metres @ 0.54% Cu from 4 metres
PHC029	Au	g/t	0	1	1	0.10	1 metre @ 0.10g/t Au from surface
			4	8	4	0.25	4 metres @ 0.25g/t Au from 4 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	0	1	1	0.12	1 metre @ 0.12% Cu from surface
PHC030	Au	g/t	0	1	1	2.75	1 metre @ 2.75g/t Au from surface

11.1.15	El	V-l	Depth	(m)	Intercept	D lt	Lutanian Communication
Hole ID	Element	Value	From	То	(m)	Result	Intercept Summary
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	_	-	NSR
PHC031	Au	g/t	22	23	1	0.10	1 metre @ 0.10g/t Au from 22 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	23	24	1	0.14	1 metre @ 0.14% Cu from 23 metres
PHC032	Au	g/t	22	24	2	0.13	2 metres @ 0.13g/t Au from 22 metres
	Ag	g/t	-	_	-	-	Not assayed
	Cu	%	29	33	4	0.24	4 metres @ 0.24% Cu from 29 metres
PHC033	Au	g/t	29	34	5	1.79	5 metres @ 1.79g/t Au from 29 metres
	Ag	g/t	-	_	-	-	Not assayed
	Cu	%	0	7	7	0.14	7 metres @ 0.14% Cu from surface
PHC034	Au	g/t	0	1	1	0.20	1 metre @ 0.20g/t Au from surface
1110034	Ag	g/t	_	_	_	-	Not assayed
	Cu	%	0	1	1	0.12	1 metre @ 0.12% Cu from surface
DITCOSE	Cu	70	5	6	1	0.12	1 metre @ 0.12% Cu from 5 metres
PHC035	Au	g/t	0	3	3	0.70	3 metres @ 0.91g/t Au from surface
	Au	9/1	5	7	2	0.55	2 metres @ 0.55g/t Au from 5 metres
	Ag	g/t	-	_	-	-	Not assayed
	Cu	%	13	18	5	0.31	5 metres @0.31% Cu from 13 metres
DI IOOO /	Au		0	1	1	0.51	1 metre @ 0.53g/t Au from surface
PHC036	Au	g/t	13	19	6	1.42	6 metres @ 1.42g/t Au from 13 metres
	Ag	g/t	-	-	_	-	Not assayed
	Cu	% %	16	25	9	1.27	9 metres @ 1.27% Cu from 16 metres
DUCOOT	Au	g/t	16	25	9	12.86	9 metres @ 12.86g/t Au from 16 metres
PHC037	Au	g/t	29	30	1	0.51	1 metre @ 0.51g/t Au from 29 metres
	Ag	g/t	_	_		-	Not assayed
	Cu	% %	23	25	2	0.38	2 metres @ 0.38% Cu from 23 metres
	Cu	70	27	28	1	0.36	1 metre @ 0.13% Cu from 27 metres
DUCOCO	Au	g/t	23	25	2	1.29	2 metres @ 1.29g/t Au from 23 metres
PHC038	Au	g/t	27	28	1	0.25	1 metre @ 0.25g/t Au from 27 metres
	Ag	g/t	-	_	<u>'</u>	-	Not assayed
	Cu	% %	33	34	1	0.31	1 metre @ 0.31% Cu from 33 metres
DUIDOOO	Au	g/t	4	5	1	0.31	1 metre @ 0.31% Cu from 3 metres
PHC039	Au	g/t	32	35	3	0.11	3 metres @ 0.33g/t Au from 32 metres
	٨α	g /t	-	33	3	-	Not assayed
	Ag	g/t		-	-		,
	Cu	%	-	-	-	-	NSR
PHC040	Au	g/t	-	-	-	-	NSR Not associate
	Ag	g/t	-	-	-	- 0.01	Not assayed
	Cu	%	7	8	1	0.26	1 metre @ 0.26% Cu from 7 metres
		1.	11	12	1	0.27	1 metre @ 0.27% Cu from 11 metres
PHC041	Au	g/t	0	2	2	0.34	2 metres @ 0.34g/t Au from surface
			7	8	1	0.34	1 metre @ 0.34g/t Au from 7 metres
	1	,.	11	12	1	0.47	1 metre @ 0.47g/t Au from 11 metres
	Ag	g/t	-	-	-	-	Not assayed

Hole ID	Element	Value	Depth	(m)	Intercept	Result	Intercept Summary
HOLE ID	Etement	value	From	То	(m)	Result	intercept Summary
	Cu	%	14	17	3	1.20	3 metres @ 1.29% Cu from 14 metres
			22	23	1	0.42	1 metre @ 0.42% Cu from 22 metres
	Au	g/t	0	1	1	0.15	1 metre @ 0.15g/t Au from surface
PHC042			14	17	3	16.67	3 metres @ 16.67g/t Au from 14 metres
			20	21	1	2.20	1 metre @ 2.20g/t Au from 20 metres
			22	24	2	3.33	2 metres @ 3.33g/t Au from 22 metres
			25	31	6	0.26	6 metres @ 0.26g/t Au from 25 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	16	20	4	0.36	4 metres @ 0.36% Cu from 16 metres
	Au	g/t	2	3	1	0.34	1 metre @ 0.34g/t Au from 2 metres
PHC043			16	20	4	3.97	4 metres @ 3.97g/t Au from 16 metres
			25	26	1	0.18	1 metre @ 0.18g/t Au from 25 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	-	-	NSR
PHC044	Au	g/t	0	1	1	0.18	1 metre @ 0.18g/t Au from surface
			6	7	1	0.23	1 metre @ 0.23g/t Au from 6 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	-	-	NSR
PHC045	Au	g/t	_	-	-	-	NSR
	Ag	g/t		-	_	-	Not assayed
	Cu	%	0	2	2	0.17	2 metres @ 0.17% Cu from surface
			4	7	3	0.28	3 metres @ 0.28% Cu from 4 metres
PHC046	Au	g/t	0	2	2	0.59	2 metres @ 0.59g/t Au from surface
11100-10			4	8	4	0.84	4 metres @ 0.84g/t Au from 4 metres
	Ag	g/t	-	_	-	-	Not assayed
	Cu	%	4	12	8	1.79	8 metres @ 1.79% Cu from 4 metres
			15	18	3	1.43	3 metres @ 1.43% Cu from 15 metres
			21	22	1	0.10	1 metre @ 0.10% Cu from 21 metres
PHC047	Au	g/t	0	1	1	0.14	1 metre @ 0.14g/t Au from surface
			6	12	6	11.59	5 metres @ 11.59g/t Au from 6 metres
			15	23	8	5.45	8 metres @ 5.45g/t Au from 15 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	8	13	5	0.44	5 metres @ 0.44% Cu from 8 metres
PHC048	Au	g/t	0	1	1	0.12	1 metre @ 0.12g/t Au from surface
			7	15	8	1.22	8 metres @ 1.22g/t Au from 7 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	19	24	5	0.12	5 metres @ 0.12% Cu from 19 metres
PHC049	Au	g/t	0	1	1	0.12	1 metre @ 0.12g/t Au from surface
,		_	10	11	1	0.13	1 metre @ 0.13g/t Au from 10 metres
			19	24	5	1.15	5 metres @ 1.15g/t Au from 19 metres
	Ag	g/t	-	-	_	-	Not assayed
			12	13	1	0.12	1 metre @ 0.12% Cu from 12 metres
	Cu	%	19	20	1	0.15	1 metre @ 0.15% Cu from 19 metres
			28	31	3	0.12	3 metres @ 0.12% Cu from 28 metres
PHC050	Au	g/t	0	1	1	0.15	1 metre @ 0.15g/t Au from surface

			Depth	(m)	Intercept		
Hole ID	Element	Value	From	То	(m)	Result	Intercept Summary
			28	31	3	0.26	3 metres @ 0.26g/t Au from 28 metres
			34	35	1	0.10	1 metre @ 0.10g/t Au from 34 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	-	-	NSR
PHC051	Au	g/t	-	-	-	-	NSR
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	1	3	2	0.12	2 metres @ 0.12% Cu from 1 metre
			9	10	1	0.11	1 metre @ 0.11% Cu from 9 metres
PHC052	Au	g/t	0	3	3	0.54	3 metres @ 0.54g/t Au from surface
	<u> </u>	,	9	10	1	0.11	1 metre @ 0.11g/t Au from 9 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	0	1	1	0.10	1 metre @ 0.10% Cu from surface
			2	4	2	0.30	2 metres @ 0.30% Cu from 2 metres
5110050	Δ.,	a./*	5	9	4	0.29	4 metres @ 0.29% Cu from 5 metres
PHC053	Au	g/t	2	1	2	0.19 0.93	1 metre @ 0.19g/t Au from surface 2 metres @ 0.93g/t Au from 2 metres
			5	9	4	0.63	4 metres @ 0.63g/t Au from 5 metres
	Ag	g/t	-	_	_	-	Not assayed
	Cu	%	11	16	5	0.53	5 metres @ 0.53% Cu from 11 metres
PHC054	Au	g/t	11	17	6	3.51	6 metres @ 3.51g/t Au from 11 metres
PHC034	Ag	g/t	-	-	_	-	Not assayed
	Cu	%	1	2	1	0.10	1 metre @ 0.10% Cu from 1 metre
PHC055	Cu	70	23	27	4	0.17	4 metres @ 0.17% Cu from 23 metres
FIICOSS	Au	g/t	23	27	4	2.06	4 metres @ 2.06g/t Au from 23 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	-	_	NSR
PHC056	Au	g/t	-	-	_	_	NSR
1110000	Ag	g/t	-	-	_	_	Not assayed
	Cu	%	1	4	3	0.32	3 metres @ 0.32% Cu from 1 metre
PHC057	Au	g/t	0	4	4	1.05	4 metres @ 1.05g/t Au from surface
			11	12	1	0.58	1 metre @ 0.58g/t Au from 11 metres
	Ag	g/t	-	-	_	-	Not assayed
	Cu	%	0	1	1	0.24	1 metre @ 0.24% Cu from surface
PHC058	Au	g/t	0	1	1	0.14	1 metre @ 0.14g/t Au from surface
	Ag	g/t	-	-	-	_	Not assayed
	Cu	%	0	1	1	0.12	1 metre @ 0.12% Cu from surface
			4	8	4	0.27	4 metres @ 0.27% Cu from 4 metres
PHC059	Au	g/t	0	1	1	0.14	1 metre @ 0.14g/t Au from surface
	1		4	7	3	1.14	3 metres @ 1.14g/t Au from 4 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	15	17	2	0.23	2 metres @ 0.23% Cu from 15 metres
PHC060	Au	g/t	15	17	2	1.16	2 metres @ 1.16g/t Au from 15 metres
	1		22	23	1	0.41	1 metre @ 0.41g/t Au from 22 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	23	24	1	0.15	1 metre @ 0.15% Cu from 23 metres

11.1.15	F1	V-l	Depth	(m)	Intercept	D!s	Lutanian Communication
Hole ID	Element	Value	From	То	(m)	Result	Intercept Summary
PHC061	Au	g/t	11	13	2	0.32	2 metres @ 0.32g/t Au from 11 metres
			21	23	2	0.13	2 metres @ 0.13g/t Au from 21 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	-	-	NSR
PHC062	Au	g/t	1	2	1	0.16	1 metre @ 0.16g/t Au from 1 metre
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	-	-	-	-	NSR
PHC063	Au	g/t	0	3	3	0.15	3 metres @ 0.15g/t Au from surface
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	0	4	4	0.16	4 metres @ 0.16% cu from surface
PHC064	Au	g/t	0	3	3	1.40	3 metres @ 1.40g/t Au from surface
	Ag	g/t	-	_	_	-	Not assayed
	Cu	%	10	12	2	0.23	2 metres @ 0.23% Cu from 10 metres
			20	21	1	0.13	1 metre @ 0.13% from 20 metres to EOH
PHC065	Au	g/t	0	2	2	0.74	2 metres @ 0.74g/t Au from surface
			11	13	2	4.41	2 metres @ 4.41g/t Au from 11 metres
	Ag	g/t	-	-	_	-	Not assayed
	Cu	%	-	_	_	-	NSR
PHC066	Au	g/t	17	21	4	0.24	4 metres @ 0.24g/t Au from 17 metres
			25	26	1	0.11	1 metre @ 0.11g/t Au from 25 metres
	Ag	g/t	-	-	_	_	Not assayed
	Cu	%	-	-	_	-	NSR
PHC067	Au	g/t	-	-	_	_	NSR
	Ag	g/t	-	_	-	-	Not assayed
	Cu	%	-	-	_	-	NSR
PHC068	Au	g/t	-	-	-	-	NSR
	Ag	g/t	-	_	_	-	Not assayed
	Cu	%	-	-	_	_	NSR
PHC069	Au	g/t	0	1	1	0.20	1 metre @ 0.20g/t Au from surface
	Ag	g/t	-	-	_	-	Not assayed
			6	7	1	0.25	1 metre @ 0.25% Cu from 6 metres
PHC070	Cu	%	12	13	1	0.11	1 metre @ 0.11% Cu from 12 metres
	Au	g/t	0	7	7	0.40	7 metres @ 0.40g/t Au from surface
	Ag	g/t	-	-	_	-	Not assayed
	Cu	%	20	22	2	0.17	2 metres @ 0.17% Cu from 20 metres
PHC071	Au	g/t	21	23	2	0.28	2 metres @ 0.28g/t Au from 21 metres
	Ag	g/t	-	-	_	_	Not assayed
	Cu	%	4	6	2	0.14	2 metres @ 0.14% Cu from 4 metres
			13	18	5	0.19	5 metres @ 0.19% Cu from 13 metres
PHC072			23	24	1	0.11	1 metre @ 0.11% Cu from 23 metres
			28	29	1	0.11	1 metre @ 0.11% Cu from 28 metres
	Au	g/t	4	6	2	0.15	2 metres @ 0.15g/t au from 4 metres
			14	24	10	0.12	10 metres @ 0.12g/t Au from 14 metres
	Ag	g/t	-	-	-	-	Not assayed
						1	1

		\.	Depth	(m)	Intercept		
Hole ID	Element	Value	From	То	(m)	Result	Intercept Summary
	Cu	%	-	-	-	-	NSR
PHC073	Au	g/t	-	-	-	-	NSR
	Ag	g/t	-	-	=	-	Not assayed
	Cu	%	-	-	-	-	NSR
PHC074	Au	g/t	-	-	-	-	NSR
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	0	6	6	0.30	6 metres @ 0.30% Cu from surface
PHC075	Au	g/t	0	6	6	0.42	6 metres @ 0.42g/t Au from surface
	Ag	g/t	-	-	_	-	Not assayed
	Cu	%	9	12	3	0.13	3 metres @ 0.13% Cu from 9 metres
PHC076	Au	g/t	2	12	10	0.15	10 metres @ 0.15g/t Au from 2 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	11	12	1	0.15	1 metre @ 0.15% Cu from 11 metres
			15	16	1	0.11	1 metre @ 0.11% Cu from 15 metres
			20	21	1	0.12	1 metre @ 0.12% Cu from 20 metres
			25	26	1	0.14	1 metre @ 0.14% Cu from 25 metres
PHC077	Au	g/t	8	9	1	0.19	1 metre @ 0.19g/t Au from 8 metres
			15	16	1	0.11	1 metre @ 0.11g/t au from 15 metres
			17	18	1	0.10	1 metre @ 0.10g/t Au from 17 metres
			19	20	1	0.21	1 metre @ 0.21g/t Au from 19 metres
			25	26	1	0.21	1 metre @ 0.21g/t Au from 25 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	10	12	2	0.21	2 metres @ 0.21g/t Au from 10 metres
PHC097	Au	g/t	2	5	3	0.28	3 metres @ 0.28g/t Au from 2 metres
			4	8	4	0.30	4 metres @ 0.30g/t Au from 4 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	20	22	2	0.25	2 metres @ 0.25% Cu from 20 metres
PHC098	Au	g/t	0	1	1	0.15	1 metre @ 0.15g/t Au from surface
			17	18	1	0.12	1 metre @ 0.12g/t Au from 17 metres
			20	21	1	0.25	1 metre @ 0.25g/t Au from 20 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	26	30	4	0.33	4 metres @ 0.33% Cu from 26 metres
PHC099	Au	g/t	27	30	3	0.46	3 metres @ 0.46g/t Au from 27 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	33	36	3	0.73	3 metres @ 0.73% Cu from 33 metres
PHC100	Au	g/t	0	1	1	0.31	1 metre @ 0.31g/t Au from surface
			33	36	3	0.98	3 metres @ 0.98g/t Au from 33 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	0	1	1	0.11	1 metre @ 0.11% Cu from surface
			38	38	1	0.85	1 metre @ 0.85% Cu from 38 metres
			39	43	4	0.59	5 metres @ 0.59% Cu from 39 metres
PHC101			45	46	1	0.14	1 metre @ 0.14% Cu from 45 metres
	Au	g/t	0	1	1	0.39	1 metre @ 0.39g/t Au from surface
			37	51	14	3.32	14 metres @ 3.32g/t Au from 37 metres to EOH

		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Depth	(m)	Intercept		
Hole ID	Element	Value	From	То	(m)	Result	Intercept Summary
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	4	5	1	0.18	1 metre @ 0.18% Cu from 4 metres
PHC102	Au	g/t	2	5	3	0.25	3 metres @ 0.25g/t Au from 2 metres
			17	18	1	0.10	1 metre @ 0.10 g/t Au from 17 metres
	Ag	g/t	_	-	-	-	Not assayed
	Cu	%	_	-	-	-	NSR
PHC103	Au	g/t	14	15	1	0.41	1 metre @ 0.41g/t Au from 14 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	23	25	2	0.20	2 metres @ 0.20% Cu from 23 metres
PHC104	Au	g/t	23	24	1	0.12	1 metre @ 0.12g/t Au from 23 metres
1110104	Ag	g/t	_	_	-	-	Not assayed
	Cu	%	30	33	3	0.20	3 metres @ 0.20% Cu from 30 metres
PHC105	Au	g/t	0	1	1	0.17	1 metre @ 0.17g/t Au from surface
1110103	7.0	9, 1	21	22	1	0.16	1 metre @ 0.16g/t Au from 21 metres
			30	31	1	0.55	1 metre @ 0.55g/t Au from 30 metres
	Ag	g/t	_	_	_	-	Not assayed
	Cu	%	37	40	3	0.46	3 metres @ 0.46% Cu from 37 metres
PHC106	Au	g/t	0	1	1	0.34	1 metre @ 0.34g/t Au from surface
PHC100	Au	9/1	37	40	3	1.07	3 metres @ 1.07g/t Au from 37 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	0	1	1	0.80	1 metre @ 0.80% Cu from surface
	Cu	70	40	47	7	0.22	7 metres @ 0.22% Cu from 40 metres
DUC107	Au	g/t	0	2	2	1.07	2 metres @ 1.07g/t Au from surface
PHC107	Au	9/1	40	46	6	0.44	6 metres @ 0.44g/t Au from 40 metres
	Ag	g/t	-	_	_	-	Not assayed
	Cu	%	7	9	2	0.11	2 metres @ 0.11% Cu from 7 metres
DUC100	Cu	70	11	12	1	0.11	1 metre @ 0.11% Cu from 11 metres
PHC108	Au	g/t		-	_	-	NSR
	Ag	g/t		_	<u> </u>	_	Not assayed
	Cu	9/ t %					NSR
DU0100	Au	g/t	-	-	-	-	NSR
PHC109					<u>-</u>		
	Ag	g/t	-				Not assayed
	Cu	%	-	-	-	- 0.17	NSR
PHC110	Au	g/t	28	30	2	0.14	2 metres @ 0.14g/t Au from 28 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	34	36	2	0.55	2 metres @ 0.55% Cu from 34 metres
PHC111	Au	g/t	0	1	1	0.11	1 metre @ 0.11g/t Au from surface
		1,	34	37	3	3.93	3 metres @ 3.39g/t Au from 34 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	41	43	2	0.36	2 metres @ 0.36% Cu from 41 metres
	Au	g/t	0	1	1	0.52	1 metre @ 0.52g/t Au from surface
PHC112			19	20	1	0.34	1 metre @ 0.34g/t Au from 19 metres
			40	43	3	0.64	3 metres @ 0.64g/t Au from 40 metres
	Ag	g/t	-	-	-	-	Not assayed

Hole ID	Flamant	Value	Depth	(m)	Intercept	Result	Internant Community
Hole ID	Element	value	From	То	(m) [']	Result	Intercept Summary
	Cu	%	5	6	1	0.15	1 metre @ 0.15% Cu from 5 metres
			12	14	2	0.14	2 metres @ 0.14% Cu from 12 metres
PHC113	Au	g/t	4	5	1	0.17	1 metre @ 0.17g/t Au from 4 metres
	Ag	g/t	-	ı	ı	-	Not assayed
	Cu	%	15	18	3	0.17	3 metres @ 0.17% Cu from 15 metres
PHC114	Au	g/t	14	18	4	0.16	4 metres @ 0.16g/t Au from 14 metres
	Ag	g/t	-	ı	ı	-	Not assayed
	Cu	%	24	25	1	0.19	1 metre @ 0.19% Cu from 24 metres
PHC115	Au	g/t	24	25	1	0.12	1 metre @ 0.12g/t Au from 24 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	31	34	3	0.23	3 metres @ 0.23% Cu from 31 metres
PHC116	Au	g/t	0	3	3	0.19	3 metres @ 0.19g/t Au from surface
			31	34	3	0.27	3 metres @ 0.27g/t Au from 31 metres
	Ag	g/t	-	ı	ı	-	Not assayed
	Cu	%	0	1	1	0.13	1 metre @ 0.13% Cu from surface
			38	40	2	0.20	2 metres @ 0.20% Cu from 38 metres
PHC117	Au	g/t	0	1	1	0.41	1 metre @ 0.41g/t Au from surface
			38	40	2	0.19	2 metres @ 0.19g/t Au from 38 metres
			44	45	1	0.46	1 metre @ 0.46g/t Au from 44 metres
	Ag	g/t	-	-	-	-	Not assayed
	Cu	%	0	1	1	0.18	1 metre @ 0.18% Cu from surface
			45	49	4	0.30	4 metres @ 0.30% Cu from 45 metres
PHC118	Au	g/t	0	2	2	0.54	2 metres @ 0.54g/t Au from surface
			45	51	6	0.30	6 metres @ 0.30g/t Au from 45 metres
	Ag	g/t	-	-	-	-	Not assayed

Table 2: Chunderloo North Prospect Results

Hole ID	Flormont	Value	Depth	n (m)	Intercept	Result	Intercent Comment
Hote ID	Element	Value	From	То	(m)	Result	Intercept Summary
	Cu	%	-	-	-	-	Not assayed
08CHRC003	Au	g/t	20	21	1	0.10	1 metre @ 0.10g/t Au from 20 metres
			25	26	1	0.14	1 metre @ 0.14g/t Au from 25 metres
			29	33	4	0.15	4 metres @ 0.15g/t Au from 29 metres
			36	37	1	0.14	1 metre @ 0.14g/t Au from 36 metres
	48 50 2 0.		0.29	2 metres @ 0.29g/t Au from 48 metres			
08CHRC004	Cu	%	-	1	-	-	Not assayed
	Au	g/t	41	42	1	0.11	1 metre @ 0.11g/t Au from 41 metres
	Cu	%	9	10	1	0.18	1 metre @ 0.18% Cu from 9 metres
PHC078	Au	g/t	0	1	1	0.12	1 metre @ 0.12g/t Au from surface
			4	10	6	0.61	6 metres @ 0.61g/t Au from 4 metres
	Cu	%	20	22	2	0.14	2 metres @ 0.14% Cu from 20 metres
PHC079	Au	g/t	20	21	1	0.16	1 metre @ 0.16g/t Au from 20 metres
			23	29	6	0.13	6 metres @ 0.13g/t Au from 23 metres

			Depth	n (m)	Intercept		
Hole ID	Element	Value	From	То	(m)	Result	Intercept Summary
			32	35	3	0.10	3 metres @ 0.10g/t Au from 32 metres
	Cu	%	39	40	1	0.18	1 metre @ 0.18% Cu from 39 metres
			60	61	1	0.26	1 metre @ 0.26% Cu from 60 metres
PHC080	Au	g/t	32	33	1	0.11	1 metre @ 0.11g/t au from 32 metres
			38	44	6	0.52	6 metres @ 0.52g/t Au from 38 metres
			48	49	1	0.10	1 metre @ 0.10g/t Au from 48 metres
			61	64	3	0.14	3 metres @ 0.14g/t Au from 61 metres
PHC081	Cu	%	58	59	1	0.12	1 metre @ 0.12% Cu from 58 metres
	Au	g/t	54	55	1	0.33	1 metre @ 0.33g/t au from 54 metres
	Cu	%	36	37	1	0.13	1 metre @ 0.13% Cu from 36 metres
PHC082	Au	g/t	4	16	12	0.17	12 metres @ 0.17g/t Au from 4 metres
			34	37	3	0.42	3 metres @ 0.42g/t Au from 34 metres
			42	44	2	0.33	2 metres @ 0.33g/t Au from 42 metres
PHC083	Cu	%	-	ı	-	-	NSR
	Au	g/t	30	32	2	0.13	2 metres @ 0.13g/t Au from 30 metres
	Cu	%	46	47	1	0.11	1 metre @ 0.11% Cu from 46 metres
			50	51	1	0.13	1 metre @ 0.13% Cu from 50 metres
PHC084	Au	g/t	38	39	1	0.12	1 metre @ 0.12g/t Au from 38 metres
			46	51	5	0.20	5 metres @ 0.20g/t Au from 46 metres
			56	57	1	0.35	1 metre @ 0.35g/t Au from 56 metres
PHC085	Cu	%	-	-	-	-	NSR
	Au	g/t	-	-	-	-	NSR
	Cu	%	-	-	-	-	NSR
PHC086	Au	g/t	0	4	4	0.20	4 metres @ 0.20g/t Au from surface
			8	9	1	0.15	1 metre @ 0.15g/t Au from 8 metres
			28	30	2	0.76	2 metres @ 0.76g/t Au from 28 metres
	Cu	%	-	ı	-	-	NSR
	Au	g/t	2	3	1	0.26	1 metre @ 0.26g/t Au from 2 metres
PHC087			19	20	1	0.12	1 metre @ 0.12g/t Au from 19 metres
			25	28	3	0.26	3 metres @ 0.26g/t Au from 25 metres
			32	33	1	0.11	1 metre @ 0.11g/t Au from 32 metres
			53	54	1	0.10	1 metre @ 0.10g/t Au from 53 metres
PHC088	Cu	%	43	45	2	0.14	2 metres @ 0.14% Cu from 43 metres
	Au	g/t	40	45	5	0.26	5 metres @ 0.26g/t Au from 40 metres
	Cu	%	53	57	4	0.14	4 metres @ 0.14% Cu from 53 metres
PHC089	Au	g/t	14	15	1	0.84	1 metre @ 0.84g/t Au from 14 metres
			53	54	2	0.85	2 metres @ 0.85g/t Au from 53 metres
	Cu	%	0	1	1	0.10	1 metre @ 0.10% Cu from surface
			5	7	2	0.17	2 metres @ 0.17% Cu from 5 metres
PHC090	Au	g/t	0	1	1	0.54	1 metre @ 0.54g/t au from surface
			5	7	2	0.17	2 metres @ 0.17g/t Au from 5 metres
			11	12	1	0.10	1 metre @ 0.10g/t Au from 11 metres
			14	15	1	0.24	1 metre @ 0.24g/t Au from 14 metres
			28	29	1	0.24	1 metre @ 0.24g/t au from 28 metres

II.I. ID	FI	Wales	Depth	n (m)	Intercept	D li	
Hole ID	Element	Value	From	То	(m)	Result	Intercept Summary
	Cu	%	23	24	1	0.13	1 metre @ 0.13% Cu from 23 metres
PHC091	Au	g/t	0	1	1	0.12	1 metre @ 0.12g/t Au from surface
			22	24	2	0.25	2 metres @ 0.25g/t Au from 22 metres
			29	30	1	0.10	1 metre @ 0.10g/t Au from 29 metres
			40	41	1	0.20	1 metre @ 0.20g/t au from 40 metres
			52	53	1	0.17	1 metre @ 0.17g/t Au from 52 metres
	Cu	%	-	-	-	-	NSR
PHC092	Au	g/t	38	39	1	0.18	1 metre @ 0.18g/t Au from 38 metres
			45	47	2	0.31	2 metres @ 0.31g/t Au from 45 metres
			59	60	1	0.44	1 metre @ 0.44g/t Au from 59 metres
	Cu	%	62	63	1	0.12	1 metre @ 0.12% Cu from 62 metres
PHC093	Au	g/t	52	54	2	0.37	2 metres @ 0.37g/t Au from 52 metres
			59	70	11	0.24	11 metres @ 0.24g/t Au from 59 metres
	Cu	%	0	1	1	0.10	1 metre @ 0.10% Cu from surface
PHC094	Au	g/t	0	1	1	0.17	1 metre @ 0.17g/t Au from surface
			5	6	2	2.97	1 metre @ 2.97g/t Au from 5 metres
			39	40	1	0.13	1 metre @ 0.13g/t au from 39 metres
	Cu	%	18	20	2	0.13	2 metres @ 0.13% Cu from 18 metres
PHC095	Au	g/t	16	18	2	0.92	2 metres @ 0.92g/t Au from 16 metres
			21	23	2	0.13	2 metres @ 0.13g/t Au from 21 metres
			25	28	3	0.22	3 metres @ 0.22g/t Au from 25 metres
			60	61	1	0.17	1 metre @ 0.17g/t Au from 60 metres
	Cu	%	52	52	1	0.39	1 metre @ 0.39% Cu from 52 metres
PHC096	Au	g/t	34	37	3	0.19	3 metres @ 0.19g/t Au from 34 metres
		_	52	53	1	0.19	1 metre @ 0.19g/t au from 52 metres
			57	58	1	0.62	1 metre @ 0.62g/t Au from 57 metres

Appendix 3 – Aquarius Exploration NL: Chunderloo Prospect Resource Calculation (1993-1994)
Table 1: Data Involved in non-JORC compliant Chunderloo resource

SECTION	HOLE	DEPTH AU		CU	INT	CONT	LAT	LON	i i	DENSITY	TONNES	TOT AU	TOT CU	AU G/T	CU %	TOP CUT	MIN W	DENSITY
10060	PHC70	6	1,35	2450		1	1 1	2 1	0	0	0	0	0	1.35	0.245	14		1 2
t0070	PHC64	. 0.	2.13	1500		1		5 1	0	2.7	135	287.55	0.2025	2.13	0.15	TONNES	GADE	
10070	PHC65	11	1.03	950	-	1/		8 1	0	2.7	216	222.48	0.2052	1.03	0.095		5.39617	7
10070	PHC56	2	1.03	2500		1	3 1	0 1)	2.7	270	278.1	0.675	1.03	0.25			
10070	PHC65	11	8.6	3500		1	1. 1	0 1		0	0	0	0	8.6	0.35			
	PCH57	2	1.24	6900		1	2 1			2.7	270	334.8	1.863	1.24	0.69			
	PCH57	3	2.06	1550		1	2 1			2.7	270	556.2	0.4185	2.06	0.155			
	PCH59	1 4	1.25	2700		1		01 1		2.7	270	337.5	0.729	1.25	0.27			
	PHC59	5	0.39	1350		1	3 1			2.7	270	105.3	0.3645	0.39	0.135			-
	PHC59		1.79	5700		1	3 1			2.7	270	483.3	1.539	1.79	0.57	i		+
	PHC60	15	1.17	3200		1.	1 1			0	0	0	0	1.17	0.32			-
	PHC53	3	1.63	4400	_	11	1/ 1			0	0	0	0	1.63	0.44			-
	PHC53	- 5	0.79	4500		1	2 1			2.7	270	213.3	1.215	0.79	0.45	<u> </u>		-
	PHC53	61	1.28	3200		+	2 1	<u> </u>		2.7	270	345.6	0.864	1.28	0.32			
	PHC54	13	17.7	17500		-	3 1			2.7	270	3780	4.725	14				<u></u>
	PHC54	14	0.7	5800		-;-	3 1			2.7	270	189	1,566	0.7				
	PHC54	15	2.39	12500		-:	3 1			2.7	270	645.3	3.375	2.39	1.25			
	PHC55	23	7.32	2500	<u> </u>	1	1: 1:			2.7	2,0	040.3	3.375	7.32	0.25			
	PHC46	5					11 1			. 0	0				0.43		<u> </u>	
			1.74	4300		1						0		1.74				
	IPCH47	91	3.78	12000		1	3 1			2.7	270	1020.6	3.24	3.78	1.2			+
	PCH47	10	43.4	35500		1	3 1			2.7	270	3780	9.585	14	3.55			+
	PCH47	11	21.5	90000		1	3 1			2.7	270	3780	24.3	14				
	PCH47	14	23.7	22000		1	3 1			2.7	270	3780	5.94	14	2.2			
	PCH47	15	16	18000		1,	3 1			2.7	270	3780	4,86	14	1.8			
	PCH47	16	1.57	2850		1	3 1			2.7	270	423.9	0.7695	1.57	0.285			
	PHC48	9	3.71	10500		1	2 1			2.7	270	1001.7	2.835	3.71	1.05			!
	PHC48	10	4.94	5050		1	2 1			2.7	270	1333.8	1.3635	4.94	0.506			
	PHC49	20	3.6	1600		1	21			2.7	270	972	0.432	3.6	0.16			
	PHC49	21	1.64	2850		1	2 1			2.7	270	442.8	0.7695	1.64	0.285		<u> </u>	
	PHC42	15	42.7	15000		1	2 1			2.7	270	3780	4.05	14	1.5			
	PHC42	16	6.8	19500		1	2 1			2.7	270	1836	5.265	f.8	1.95			-
	PHC42	20	2.2	4150		1	4 1			2.7	270	594	1.1205	2.2	0.415			
	PHC42	21	2.2	4150	<u> </u>	1:	4 1	0 1		2.7	270	594	1.1205	2.2	0.415			
	PHC42	22	4.75	4150		1	4 ti	0 1)	2.7	270	1282.5	1.1205	4.75	0.415			1_
	PHC42	23	1.9	740		1	4 1	0 1)	2.7	270	513	0.1998	1.9	0.074			!
	PHC43	16	1,12	3100		1	3 1	0 1)	2.7	270	302.4	0.837	1.12	0.31			
10110	PHC43	17	13.03	6450		1	3 1	01)	2.7	270	3518.1	1.7415	13.03	0.645			
10110	(PHC43	18	1.43	3050		1	3 1	0 1)	2.7	270	386.1	0.8235	1.43	0.305		T .	
10120	PHC35	0 !	2.35	1150		1	1 10) 1)	0	0	0	0	2.35	0.115			
10120	PHC36	22	4.32	4250		1	2 1	0 j 1	}	2.7	270	1166.4	1.1475	4.32	0.425	· ·		
10120	PHC36	23	2.73	4450	T	1.	2 1	0 1)	: 2.7	270	737.1	1.2015	2.73	0.445			
10120	PHC37	34	4.39	3700		1	6. 1	0 1	3,	2.7	2701	1185.3	0.889	4.39	0.37			
10120	PHC37	35	11.9	51000		1	6 1	0 1		2.7	270	32131	13.77	11.9	5,1			
	PHC37	36	4.5	12500		1	6 1			2.7	270	1215	3,375	4.5	1.25			
10120	PHC37	37	5.8	17000		1	Б. 1	0 1	1	2.7	270	1568	4.59	5.8	1.7			
	PHC37	38	76	13600		1	61 1			2.7	270	3780	3.672	14	1.36			
	PHC37	39	12.9	13000		1	6 1			2.7	270	3483	3,51)	12.9				-
	PHC38	39	1.74	4650		1.	1 1			0		0	0.51	1.74	0.465			+-
	PHC33	36	5.7	3250		11	2 1			2.7	270	1539	0.8775	5.7	0.325			-
	PHC33	31,	2.35	2050		1	2 1			2.7	270	634.5	0.5535	2,35	0.205			+
	PHC23	1 5	1,15	14000		-i 	1 1			- 2.7	0	034,5	0:	1.15	1.4			
10 140	PHC25	15	2.68	26500		4	3 1			2.7	270	723.8	7.155	2.68	2.65			

(Table 1 Continued)

10140 PHC25	15	2.11	4200	11	31	101	10	2.7	270	567	1.134	2.1	0.42		
10140 PHC25	17	1.55	5450	- i l	3	10	10	2.7	270	418.5	1.4715	1,55	0.545		
10140 PHC27	29	4.2	1300	- 1	3	10	10:	2.7	270	1134	0.351	4.2	0.13		
10140 PHC27	30	20.6	2500	1	3	10	10	2.7	270	3780	0.675	14	0.25		
10140 PHC27	31	2.28	7750	il-	3.	10.	10	2.7	270	615.6	2.0925	2.28	9.775		
10140 PHC28	35	1.48	2400	1	2+	101	10	2.7	270	399.6	0.648	1.48	0.24		-
10140 PHC28	36	8.62	17000	1	2	10	10	2.7	270	2327.4	4.59	8.62	1.7		-
10150 PHC19	15	1.24	5050		2	10	10	2.7	270	334.8	1.3635	1.24	0.505		
10150 PHC19	16	1.1	3650	- - ;	2	10	10	2.7	270	297	0.9855	1.1	0.365		
10150 C7	27	1.79	2620	1		5	16		2/0						
10150 PHC21		4.1	16000		5	5	10	2.7	135	553.5	0 10	1.79	0.262		-
10150 PHC21	29	5.751	10500			5	10		135		2.16	4.1	1.6		
	30							2.7		776.25		5.75	1.05		
10150 PHC21	31	5	24000	!	5	5	10	2.7	135	675	3.24	5	2.4		
10150 PHC21	32	1.12	24500	1	5	- 5	10	2.7	135	151.2	3.3075	1.12	2.45		
10150 PHC21	33	1.18	6400	1	5	5	10	2.7	135	159,3	0.864	1.18	0.64		
10150 C8	31	1.44	9600	11	3:	5,	10	2.7	135	194.4	1.296	1.44	0.96		
10150 C8	32	7.81	33400	1	3	5	10	2.7	135	1054.35	4.509	7.81	3.34		
10150 C8	33	3.71	21200	1_	3	5	10	2.7	135	500.85	2.862	3.71	2.12		
10150 PHG22	34	17.7	6050		2	5	101	2.7	135	1890	0.81675	14	0.605		
10150 PHG22	35	8.7	23500	1	2	5	10	2.7	135	1174.5	3.1725	8.7	2.35		
10150 C9	38	19.4	25000	1	3	7.5	10	2.7	202.5	2835	5.0625	14	2.5		
10150 C9	39	9.33	10700	1j	.3	7.5	10	2.7	202.5	1889.325	2.16675	9.33	1.07		
10150 C9	40	1	1390	1	3	7.5	10	2.7	202.5	202.5	0.281475	1	0.139;		
10160 PHC13	17	1.4	5400	1	1	10	101	0	0	0	0	1.4	0.54		
10160 PHC15	27	1.7	33500	1	2	10	10	2.7	270	459	9.045	1.7	3.35		
10160 PHC15	28	7.95	19500	1 ¹	2:	10	10	2.7	270	2146.5	5.265	7.95	1.95		
10160 PHC16	34	63	67500	1	15	10	10	2.7	270	3780!	18.225	14	6.75		
10160 PHC16	35	8.93	88500:	1	16	10	10	2.7	270	2411.1	23.895	8.93	8.85		
10160 PHC16	36	3.9	135000	1	15	10	10	2.7	270	1053	36,45	3.9	13.5	_	
10160 PHC16	37	35.1	195000		15	10	10:	2.7	270	3780	52.65	14	19.5		
10160 PHC16	38	75.5	64500	1	15	10	10	2.7	270	3780	17,415	14	6.45		
10160 PHC16	39	12.9	29500	1:	15	10	10	2.7	270	3483	7.965	12.9	2.95		
10160 PHC16	40	3.	6200	1.	15	10	10	2.7	270	810	1.674	3	0.62		
10160 PHC16	41	0.71	1550	11	15	10	10	2.7	270	191.7	0.4185	0.71	0.155		
10160 PHC16	42	0.85	3750	1	15	10	10	2.7	270	229.5	1.0125	0.85	0.375		
10160 PHC16	43	2.05	5150	i	15	10	10.	2.71	270	553.5	1.3905	2.05	0.515		
10160 PHC15	44	2.8	5450		15	10	10	2.7	270	756	1.4715	2.8	0.545	-	
10160 PHC16	45	5.9	7650	1	15	10	101	2.7	270	1593	2.0665	5.91	0.765		
10160 PHC15 ;	46	3.1	1700	1	15	10	10	2.7	270	837	0.459	3.1	0.17		
10180 PHC16	47	1.23	1450		15	10	10	2.7	270	332.1	0.3915	1.23	0.145		
10 160 ; PHC16	48	1.47	1900	1!	15	10.	10	2.7	270	396.9	0.513	1.47	0.19		
10170 PHC8	19.	1.03	3050		11	10	10	- 2.7	0	aa.s	0.010	1.03	0.305		
10170 PHC9	27!	1.1	620;	1	- ii	10	10	- 0	0	0.		1.1	0.062		
10170 PHC10	32	3.2	8000	- i	2	to	10	2.7	270	864	2,16	3.2	0.002		
10170 PHC10	33	7.55	305		2	10	10	2.7	270	2038.5	0.08235	7.55	0.0305	-+-	
10170 PHC10	38	7.05	2000	_ 	3		10		270	3780					
						10		2.71			0.54	14	0.2		
10170 PHC11	39	6.35	5800		3	10	10	2.7	270	1714.5	1,566	6.35	0.581		
10170 PHC11	40	1.1	725	!_	3	10	10	2.7	270	297	0.19575	1.1	0.0725		
11111 BLANK	1	1		1		-1	11	0	0	0	0	1	0.0001		
			1_					<u> </u>	21748.5	117358.6	358.2826	5.39617	3.052887		

CHUNDERLOO TENEMENT ACQUISITION HISTORIC CHUNDERLOO RESOURCE DRILLING & CHUNDERLOO NORTH RC DRILLING JORC Code, 2012 Edition Table 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 WAMEX A report: A20622 1987 RC Drilling Program 96 holes for 3,471 metres were sampled at one metre intervals with each split sample sent to R.D.G Laboratories in Meekatharra for gold and copper analysis. There are no records of measures taken to ensure sample representation. WAMEX A Report: A23489 1987/1988 RC Drilling Program. Drillex was contracted to undertake the RC drilling. Twenty two RC holes were drilled for 838 metres. Samples were taken at 1m intervals and forwarded to R.D.G's laboratory at the Bluebird mine site for gold and copper analysis. All holes were surveyed. There are no records or measures taken to ensure samples at 1m intervals and forwarded to R.D.G's Bluebird site for Cu and Au analysis. Two downhole survey shots were taken utilizing an Eastman camera. There are no records of measures taken to ensure sample representation. A071580: Mercator Gold Australia Pty Ltd (Chunderloo Drilling Report 2008 – Chunderloo North) Drilling was conducted by Moses Drilling using a Hydco-Moses drill rig with 900cfm and 350psi air units. Samples were collected in calico bags on a 1 metre basis using a 3 tier riffle splitter. Speared duplicate samples were collected every 20th sample with standards inserted at every opposing 20th samples were sent to Genalysis Laboratories in Perth for gold by Fire Assay and copper by ICPMS.
	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details 	 Reverse Circulation and Diamond Drilling

Criteria	JORC Code explanation	Commentary
	(e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	There are no details sample recoveries from the historic drilling completed across the Chunderloo Project.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Historic geological hardcopy drill logs are available from each respective WAMEX A number report and are at a high level to support mineral resource estimation. There are no results from geotechnical work being completed. Each sample was taken at a metre interval and every drill metre was logged.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	There are no records of sub-sampling techniques or sample preparation from the historic drill reports.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Pre-2008: The quality of the assays data and laboratory tests were not recorded Mercator Gold Australia Pty Ltd (2008) Samples were collected in calico bags on a 1 metre basis using a 3 tier riffle splitter. Speared duplicate samples were collected every 20th sample with standards inserted at every opposing 20th sample interval. There is no details on which standards were used or how the standards performed from the historic report.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historic intercepts have been checked with hardcopy reports to ensure that the database has been validated prior to acquisition. Primary data is in the form of printed assay sheets and historic WAMEX reports.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	RC drill collars were located using a handheld GPS by Mercator Gold Australia Pty Ltd and reported in their Annual Mineral Exploration Report 2005 (WAMEX ID: A071580). The grid system used is MGA94 Zone 50.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC drilling at the Chunderloo Prospect by Aquarius Exploration NL was completed on a 10m x 10m spacing. This is sufficient enough to establish the degree of grade continuity appropriate for Mineral Resource estimation. There is no sample compositing in the resource estimation
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The orientation of the drilling is perpendicular to the strike and dip of the modelled copper & gold mineralisation, hence no bias was introduced in the historic resource calculation.
Sample security	The measures taken to ensure sample security.	There are no records of sample security from the historic WAMEX reports.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 The historic drill assays have been reviewed by Dr Nigel Brand (Geochemical Services Pty Ltd).

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	• M51/79 – Mining Tenement This tenement is within the "Claim Area" under the co-operation and Mining Agreement between St Barbara and Ngoonooru People dated 2 nd June 2001 and is a "Future Tenement" (and therefore a "Royalty Tenement"): tenement was renewed on 4 th July 2007. Royalty = 0.45% on the production of gold only.

Criteria	JORC Code explanation	Commentary
		M51/638 – Mining Tenement Tenement was a "Tenement Application" (and therefore a Royalty Tenement") under the Co-operation and Mining Agreement between St Barbara and Ngoonooru People dated 2nd June 2004. Royalty = 0.45% on the production of gold only
		 M51/639 – Mining Tenement Tenement was a "Tenement Application" (and therefore a Royalty Tenement") under the Co-operation and Mining Agreement between St Barbara and Ngoonooru People dated 2nd June 2004. Royalty = 0.45% on the production of gold only
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historic mining across Chunderloo and Chunderloo South was carried out from 1911-1915 where prospectors recovered 980 tonnes of ore grading 27.63g/t gold and 2.72% copper In more recent times, Aquarius Exploration in conjunction with Endeavour Resources explored the Chunderloo tenements between 1985 and 1994 drilling a total of 135 RC holes (average depth of 39 metres), 1 diamond hole (69.7 metres) and 760 RAB holes (average depth of 3 metres. The RC samples were mainly analysed for copper and gold with only 17 RC holes being analysed for silver. The results from the drilling in and around the Chunderloo Prospect indicated that high grade copper is associated with high grade gold (5 – 70g/t) and where assayed high grade silver (5-30g/t). The best intersections from the RC drilling include 8 metres @ 7.41% Cu, 17 metres @ 12.99g/t Au and 5 metres @ 16.64g/t Ag. A resultant measured non-JORC compliant resource was calculated by Mercator Metals Pty Ltd (commissioned on behalf of Aquarius Exploration) to be 22,000t @ 5.4g/t Au and 1.6% Cu using a 15g/t Au top cut and an SG value of 2.7g/cm³. Metallurgical test work completed by Aquarius Exploration in 1993 determined that conventional gold

Criteria	JORC Code explanation	Commentary
		processing techniques (CIP) was ineffective in recovering the gold given the large amount of copper in the system • A northern IP anomaly (Chunderloo North) was drilled with shallow RC by Mercator Gold Australia PTY Ltd in 2008 and returned anomalous gold (>0.5g/t) and copper (>0.1%).
Geology	Deposit type, geological setting and style of mineralisation.	Given the lack of pathfinder geochemical elements from the assay analysis on historic drill samples, a deposit type cannot be categorically given. Historic reports suggest a VMS origin to the mineralisation, but the amount of quartz veining associated with the copper-gold suggests a more structurally controlled system.
		 The Chunderloo project is located in the Meekatharra-Wydgee greenstone belt, which occupies part of the northeastern Murchison Province of the Archaean Yilgarn Craton.
		This greenstone belt consists of the Luke Creek Group overlain by the Mount Farmer Group. The Luke Creek Group consists of four formations. The lower two formations, the Murrouli Basalt and the overlying Golconda Formation, are comprised of a thick sequence of mafic rocks and Banded Iron Formation (BIF) intrerlayered with mafic rocks. The overlying Gabanintha Formation consists of a bimodal succession of mafic and ultramafic rocks overlain by felsic volcanics and volcanogenic metasediments interlayered with mafic rocks.
		The Chunderloo Project geology consists of Archaean felsic, mafic and ultramafic rocks on the margin of an intrusive granite north of the project area. The sequence strikes a consistent 040° with vertical foliation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception 	Refer Appendix 1 – Table 1

Criteria	JORC Code explanation	Commentary
	depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Refer Appendix 2 - Tables 1 and 2 Refer Appendix 3 - Table 1 The table of significant intercepts were deemed at a cutoff of: 0.1% Cu 0.1g/t au 1g/t Ag (where data was available)
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Historic drilling was undertaken perpendicular to the strike and dip of the copper and gold mineralisation. The modelled copper-gold mineralisation at Chunderloo plunges to the north-east 20 degrees, has a strike of 130 degrees and dips 40 degrees to the south east.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Maps are included in the ASX announcement
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Comprehensive reporting of all historic exploration results has been included in the ASX announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	WAMEX A number: A20621 Geophysical Test Survey – Chunderloo Prospect – Endeavour Resources Ltd 1986 A geophysical test survey was executed over the Chunderloo Prospect and included Hn conductivity (or MMR) mapping, gradient array and dipole-dipole resistivity and chargeability. The chargeability produced anomalous responses that are associated with the two known

Criteria	JORC Code explanation	Commentary
		gold workings and indicated a significant anomalous zone extending northward from the northern workings
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Geophysical contractors have been engaged to conduct a follow up 3D dipole-dipole IP survey across both the Chunderloo and Chunderloo North prospect to determine the potential extension in known mineralisation at depth. This survey is anticipated to commence in the coming weeks. Infill RC drilling (coupled with any RC drilling to target any IP anomalies) will be completed at the Chunderloo Prospect to determine the full pathfinder geochemical element suite associated with the copper-gold mineralisation. The mineralised material will also be collected in green bags and submitted for metallurgical testing for a flotation processing copper ore methodology. Model Earth Geological consultants will carry out detailed mapping (both structural and lithological) at a prospect scale across all three mining tenements. This work is scheduled for June 2017.