

MARCH 2021- QUARTERLY ACTIVITIES REPORT

Quarterly Highlights

Group Output

 Gold sales of 63,139 ounces for the quarter – although at the lower end of expectations Westgold remains on track to deliver its CY2021 guidance of 270,000 – 300,000oz at C1 Cash costs of \$1200-\$1300/oz and AISC of \$1450 - \$1550/oz.

Cost Guidance

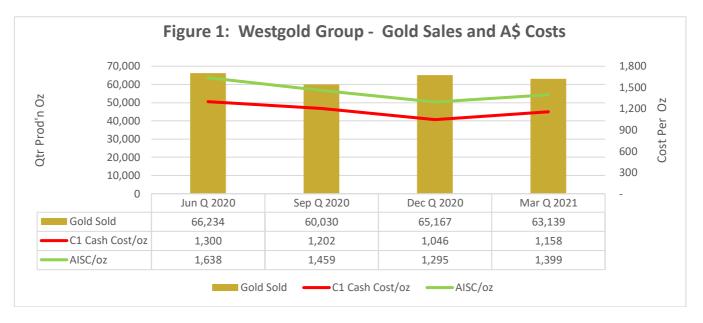
- March quarter is third consecutive quarter beating cost guidance despite lower output.
 - **Cash cost of sales (C1)** of A\$1,158/oz.
 - All-in Sustaining Cost (AISC) of A\$1,399/oz.

Group Financials

- **Mine operating cash flow remains strong** at \$56.2 million for the quarter with net mine cash flow of \$12.0 million.
- **Cash build of 9% over the quarter** cash and bullion on hand of \$178.0 million at end of quarter.
- **Lower gold price impacted revenue for the quarter** with \$141 million from gold sales at \$2,232/oz (\$167/oz lower than Q4, CY2020).
- **Capital expenditure for gold operations during the quarter of \$56.2 million** \$9.0 million was sustaining capex, \$38.4 million on growth, \$5.8 million on plant and equipment and \$3.0 million on exploration.
- Group hedge position significantly reduced by delivering 28.5% of Group quarterly sales output at A\$2,083 into its hedges to reduce total hedged ounces to 150,000oz (or ≈7% of the Group's Ore Reserves).

Growth and Exploration

- Growth and Exploration Strategy activated key appointments made during the quarter to focus on accelerating regional exploration and growth opportunities where Westgold can leverage its strong balance sheet and established mining and processing infrastructure.
- Three new mines in pre-development during H2, 2021 Bluebird underground mine and Aladdin open pit at MGO and Fender underground mine at CGO.
- Stunning exploration results from the Group's existing operations at Paddy's Flat and Nannine regional development pipeline at MGO.



QUARTERLY OVERVIEW

Westgold Resources Limited (ASX: WGX) is pleased to report another solid result for the March 2021 quarter. During the period operations were hampered by COVID-19 related workforce availability and mobility, seasonal weather impacts and one-off issues restricting access to planned mining areas.

Despite these issues the Group achieved gold sales of 63,139oz (at the lower end of expectations) and again solidly outperformed our cost guidance. Subject to further unforeseen COVID-19 events the Company remains on track to achieve its CY 2021 guidance of 270,000 – 300,000oz at C1 Cash costs of \$1200-\$1300/oz and AISC of \$1450 - \$1550/oz.

Westgold's balance sheet continues to strengthen despite lower gold prices, with cash growing by 9% over the previous quarter to \$178 million leaving the Company in a very strong fiscal position with no corporate debt. The quarterly performance depicts growing consistency of output and steady outperformance of cost guidance over the past 12 months (refer **Figure 1**).

Executive Chairman Peter Cook commented:

"The Group's performance has been remarkable in light of the events that impacted the workforce late last year and the challenges our operations faced during this quarter. Consistency in delivering operational outputs is the key focus for Westgold in 2021 and despite lower output, our third consecutive quarterly outperformance to beat our cost guidance is very pleasing and shows that Westgold can be one of the more profitable Australian goldminers.

We expect to continue to improve our physical and financial outputs over the remainder of 2021.

The calamity that is COVID-19 and the impacts and actions that are taken to defend against it have and will continue to constrain the mining sector's skilled workforce. These impacts have been exacerbated by intra-, inter and international travel restrictions as the West Australian mining sectors demand for personnel significantly outstrips its supply capability. Westgold continues to quickly adapt to these fluid circumstances and manage all components of the value chain by taking a more measured approach to project planning and ramp ups.

With a view to growth, Westgold has now reached a tipping point with capital expenditure such that we can now consider new exploration and growth opportunities. Our Murchison landholding is extensive and highly prospective with the Group now in a position to aggressively pursue greenfield exploration and growth targets across the region."

COVID-19 Response

Westgold operates a COVID-19 committee of specialists to manage our response to COVID-19 and its impacts on the health and wellbeing of our staff, contractors and stakeholders. The committee enables the Company to strategise, manage and react rapidly to government-imposed rules on intrastate, interstate and international travel restrictions which impact our staff and operations. As a result, the Company has become operationally agile and able to adapt to whatever obstacles arise to ensure business continuity.

The Company maintains a range of measures across its business consistent with advice from State and Federal health authorities to safeguard the health and welfare of our employees and their respective communities. To date there have been no confirmed cases of COVID-19 across the business.

An outcome of the Government's approach to COVID-19 is an intensifying skills shortage across the mining sector. This has had an impact on our outputs during the quarter. This unpredictable and rapidly changing environment presents some significant challenges to the business but has not reached a point where Westgold considers it necessary to revise its published CY2021 guidance.

Occupational Health, Safety and Environment (OHS)

The Group's safety statistics reveal a solid improvement in key performance metrics with the 12-month moving average lost time injury frequency rate dropping 22% to 2.58 (from 3.3) at the end of the quarter.

Westgold maintains its focus on continuous improvement of its safety management systems and training. During the quarter revised site-specific 'project operational safety plans' (POSP) and OHS strategic plans were rolled out as part of this process.

Key safety statistics measures for each key business unit are summarised in **Table 1** below.

Site	LTI	LTIFR	TRIFR*
Cue Gold Operations	1	3.15	59.8
Meekatharra Gold Operations	1	1.59	30.3
Fortnum Gold Operations	2	3.57	33.5
Minterra	2	2.82	42.3
Group Totals	4	2.58	31.0

Table 1: Westgold Group Quarterly Safety Performance

*TFIFR excludes very minor treatments and ailments

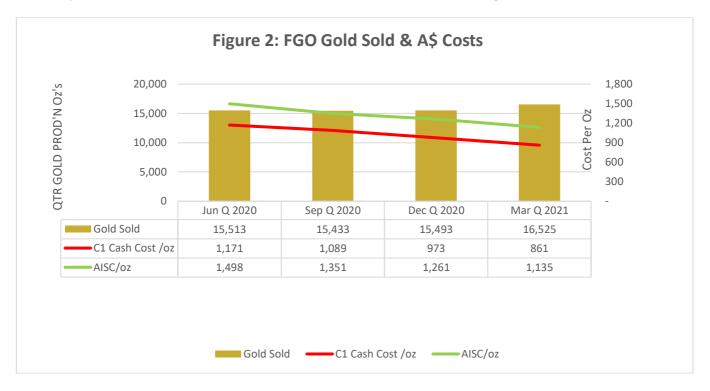
There have been no environmental breaches or significant incidents over the quarter.

GROUP OPERATIONAL PERFORMANCE SUMMARY

Physical and financial outputs for the Group for this quarter are summarised in Table 2 below.

		MGO	CGO	FGO	Group Total
		March Qtr 2021	March Qtr 2021	March Qtr 2021	March Qtr 2021
Physical Summary	Units				
ROM - UG Ore Mined	t	262,715	196,285	172,080	631,080
UG Grade Mined	g/t	2.66	2.58	3.04	2.74
OP Ore Mined	t	72,352	34,865	0	107,217
OP Grade Mined	g/t	1.35	1.53	0.00	1.41
All Ores Processed	t	405,699	311,207	202,625	919,531
Head Grade	g/t	2.21	2.34	2.74	2.37
Recovery	%	87.0	87.8	94.8	89.0
Gold Produced	ΟZ	25,023	20,543	16,926	62,492
Gold Sold	oz	25,983	20,631	16,525	63,139
Achieved Gold Price	\$/oz	2,228	2,227	2,244	2,232
Cost Summary	Units				
Mining	A\$/oz	875	626	492	689
Processing	A\$/oz	405	379	305	370
Admin	A\$/oz	74	69	61	69
Stockpile adjustments	A\$/oz	53	24	3	30
C1 Cash Cost (produced)	A\$/oz	1,407	1,098	861	1,158
Royalties	A\$/oz	117	57	66	83
C2 Cash Cost (produced)	A\$/oz	1,524	1,155	927	1,241
Corp.Costs / Reclaim. etc.	A\$/oz	12	14	19	14
Sustaining Capital	A\$/oz	168	78	189	144
All-in Sustaining Costs	A\$/oz	1,704	1,247	1,135	1,399
Cash Flow Summary					
Mine Operating Cash Flow	A\$ m	16.9	21.1	18.2	56.2
Growth/Start-up Capital	A\$ m	(9.0)	(26.1)	(3.3)	(38.4)
Plant and Equipment	A\$ m	(2.8)	(1.6)	(1.4)	(5.8)
Net Mine Cash Flow	A\$ m	5.1	(6.6)	13.6	12.0
Exploration Summary					
Exploration Spend	A\$ m	(1.5)	(1.0)	(0.5)	(3.0)

Table 2:Group Operational Summary



FORTNUM GOLD OPERATION (FGO)

Output and Fiscal Overview

FGO gold production for the quarter was 16,926oz (16,525oz sold) at cash cost of sales (C1) of \$861/oz and AISC of \$1,135/oz, generating a mine operating cash inflow of \$18.2 million and a net mine cash inflow of \$13.6 million.

Quarterly performance at FGO over the past 12 months is illustrated in **Figure 2** below:

The rolling 12-month production output aggregates to 62,478oz of gold at a cash cost (C1) of \$1,018/oz and an AISC of \$1,305/oz.

FGO continues to deliver strong profit from the Starlight underground mine and additional mill feed sourced from large, existing low-grade surface stockpiles. This quarter saw expanded production in the Starlight mine including the Moonlight, Twilight North and Trev's lodes.

Westgold is now evaluating new potential open pit opportunities to supplement underground ore sources at Fortnum increasing the ore optionality and mine life across this under-explored tenement package. Targeted long-term production for FGO is unchanged at 65,000 – 75,000oz per annum.

FGO Exploration

Starlight Underground

Systematic extensional exploration continued at the at the Starlight underground mine with positive results including the following intercepts:

- 7.3m at 14.61g/t Au from 80m in ST1086EX01
- **17.7m at 6.21g/t Au** from 123m in ST1086EX08.

• Forrest Open Pit Prospect

As highlighted, early-stage evaluation of open pit targets proximate to Fortnum commenced during the quarter. Westgold's maiden drilling program of the Forrest Prospect (where Westgold owns 100% of the gold rights) has returned results including:

- **13m at 5.32g/t Au from 31m** in 20FSTRC003
- 5m at 8.2g/t Au from 41m in 20FSTRC008
- 7m at 6.31g/t Au from 58m in 20FSTRC019

All significant intercepts received for the quarter are tabulated in Appendix A.

MEEKATHARRA GOLD OPERATION (MGO)

Output and Fiscal Overview

The Company's MGO demonstrated its robustness during the quarter producing 25,023oz (25,983oz sold. Despite operational constraints unit costs at MGO were a little higher due to the lower output and revised mine plans with cash cost of sales (C1) of \$1,407/oz and AISC of \$1,704/oz.

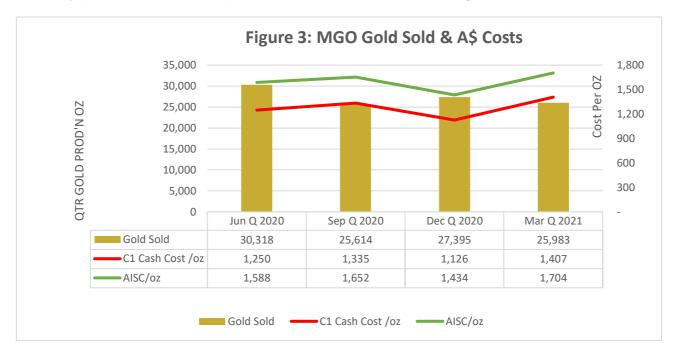
The higher costs and a \$167/oz lower gold price resulted in a lower than expected mine operating cash flow of \$16.9 million (\$23.3 million in the previous quarter) and net mine cash for the quarter of \$5.1 million from the \$13.5 million in the previous quarter.

The Bluebird processing hub processes both underground and open pit ore and performed strongly treating 405,699 tonnes for the quarter (in-line with the overall 1.6-1.8 million tonne capacity). Metallurgical recovery increased slightly this quarter as ore blends were optimised. Unit costs were marginally higher due to a mobile crushing campaign that reprocessed historic mill "scat" material and two planned shutdowns occurring during the quarter.

• Underground Operations

Mine production at MGO's Paddy Flat underground was impacted during the quarter by a shortterm ventilation issue which restricted access to some higher-grade areas planned to be mined in the quarter. This resulted in alternative lower grade stopes being extracted and hence a lower overall head grade delivered for the quarter. This has now been rectified.

Underground mining continued at the South Emu and Triton underground mines in the Reedy's area where South Emu advanced through an area of lower grade whilst Triton's North Lodes continued their early development extending the known strike and expanding the overall ore system.


First stoping at Triton is expected to commence in the ensuing quarter once ventilation and escapeway establishment is complete.

A requirement to redeploy underground personnel across existing operating underground mines due to COVID-19 related manning issues also impacted planned production from the recently started Bluebird underground mine. Bluebird operated with a skeleton crew on dayshift only for the majority of the quarter. It is anticipated that the Bluebird underground mine will be fully manned and operational during the third quarter of CY21.

• Open Pit Operations

Open pit mining continues to supplement underground production at MGO. Mining was primarily from the Maid Marion pit during the quarter, although the remaining stockpiles from 5 Mile Well pit, which finished near year end, also formed part of the plant feed. Various open pit mines will continue to supplement the underground ore sources to ensure consistent levels of production over the ensuing periods.

Quarterly performance over the past 12 months is illustrated in the **Figure 3** below:

The rolling 12-month production output for MGO aggregates 104,833oz at a Cash cost of sales (C1) of \$1,276/oz and AISC of \$1,592/oz.

Targeted long-term production for MGO is 105,000 - 120,000oz per annum.

MGO Exploration

The dominant producer at MGO, Paddy's Flat, has again produced a series of stunning results, this time from the high-grade, structurally complex Vivian's area of the mine. Best results included:

- 3.24m at 71.95 g/t Au from 58m in 20VIDD212,
- 1m at 229.30g/t Au from 18m and 1.23m at 166.27g/t Au from 25m in 20VIDD231 and
- 3.23m at 43.77g/t Au from 37m in 20VIDD233a.

These grades point to the significant endowment of this extensively mineralised system.

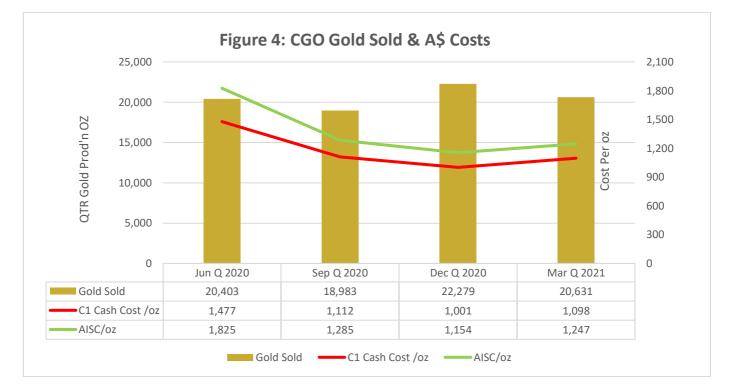
• Aladdin Open Pit

Development has continued apace to support the imminent return of open pit mining to the Nannine region. With site works underway at Aladdin, the final stages of resource definition work at satellite deposits now provide opportunities to extend the initial mining plan in this area and bring these additional targets into the plan.

Best intervals from these additional potential open pit targets include:

- Caledonian South 8m at 6.15g/t Au from 31m in 20NNRC173
- Nannine Reef 6m at 16.82g/t Au from 19m in 20NNRC243
- Baileys Island North 7m at 7.43g/t Au from 46m in 20BIRC014

On the grassroots front, conceptual exploration in the Banjo Bore region, north of Meekatharra has returned a best result of **16m at 4.85g/t Au from 32m** in 21MNRC004 which will have immediate follow-up.


All significant intercepts received for the quarter are tabulated in Appendix B.

CUE GOLD OPERATION (CGO)

Output and Fiscal Overview

CGO producing 20,543oz (20,631oz sold) during the quarter. Cash cost of sales (C1) for the quarter were \$1,098/oz and AISC were reduced to \$1,247/oz. The operation generated a mine operating cash flow of \$21.1 million, also down due to the lower gold price achieved.

CGO generated a net mine cash outflow of \$6.6 million after \$26.1 million was invested in growth capital, predominantly at Big Bell, but also with some open pit pre-stripping at Cuddingwarra.

Quarterly performance over the past 12 months is illustrated in the **Figure 4** below:

The rolling 12-month production output aggregated 80,981 oz at a Cash cost of sales (C1) of \$1,160/oz and an AISC of \$1,360/oz.

Targeted long-term production for the CGO is 100,000 - 110,000oz per annum which will be predominantly produced by Big Bell.

• Underground Operations

Underground mining during the quarter was dominated by Big Bell producing 136,743 tonnes at 2.40 g/t Au which includes a significant tonnage of lower grade (but economically viable) remnant cave material necessarily bogged to assist the new cave development.

The smaller Comet underground mine continues to contribute to overall CGO production by incrementally extending its mine life and serving as supplementary feed to the Tuckabianna process plant until Big Bell ramps up to full planned capacity.

Big Bell had a slow start to the quarter with reduced labour availability due to seasonal absenteeism, COVID-19 related travel restrictions impacting workforce availability and mobility and the emotional impact of the fatality in the previous quarter.

Despite these obstacles, Big Bell achieved two significant milestones during the quarter with the first cave stoping commencing in the southern section of the mine and the establishment of a new cave horizon under the historic cave front.

This process has required a conservative approach to the sequencing of development due to manning issues and challenges presented by post blasting exclusion zones., This has delayed the ramp-up process during the quarter and consequently the establishment of multiple mining fronts has taken longer than expected.

By the end of the quarter the first slot was fired into virgin ground within the new cave front under the historic cave. This new cave horizon will enable the conventional extraction of 'new' cave ore from the resource during Q2, CY21 as opposed to the remnant and lower grade, historic cave ore.

A newly established balanced chevron cave front with an increased number of ore drawpoints will provide greater operational flexibility and enable higher cave output going forward. As such the Big Bell mine enters a new stage of its evolution and is now expected to reach planned steady-state production in the second half of this calendar year.

Figure 4: Westgold's Big Bell Underground @ CGO (from pit crest – March 2021)

• New Underground Mine in 2021 - Fender

Mining studies were carried out in relation to a transition to underground mining at the recently completed Fender open pit on the southern limits of the Big Bell shear. It is expected that the proposed underground mining at Fender may commence before the end of CY21.

• Open Pit Operations

As a part of the strategy to extend our operational flexibility, Westgold established a new open pit mining hub at Cuddingwarra North. Pre-strips commenced at the Jim's Find (**refer Figure 5**) and the City of Chester open pits which will provide supplemental ore to the CGO plant over the ensuing year.

With a view to optimising Group assets, Westgold purchased a fleet of larger, rigid body mining trucks to mine the Cuddingwarra area. The first Cat 777 trucks are now in service at Cuddingwarra with the full cost benefits of this bigger fleet not expected to be fully evident until late in Q3, CY21.

Figure 5: Pre-strip at Jim's Find Open Pit @ CGO

CGO Exploration

Infill drilling ahead of mining at Big Bell continues to deliver large intervals of economic grades. Best intercepts for the quarter were:

- 30m at 6.17g/t Au from 133m in 20BBDD0052,
- 35.18m at 4.88g/t Au from 131m in 20BBDD0054
- 45.15m at 3.48g/t Au from 109m in 20BBDD0058

Westgold open pit mining is now well established in the Cuddingwarra North area. The initial mine in the district, Jim's Find, is progressing well and in line with geological expectations. As such, attention over the last quarter has been on readying 2022 production sources for detailed mine planning.

As part of this work, a series of resource drilling programs have been undertaken with better results being:

- Coventry Area
 - 7m at 11.77g/t Au from 16m in 20CVRC040
 - 12m at 9.28g/t Au from 33m in 20CVRC097
- City of Sydney Area
 - 7m at 14.75g/t Au from 40m in 20SYRC041
 - 10m at 14.8g/t Au from 3m in 20SYRC066

On the grass roots exploration front conceptual work has returned some excellent initial results including:

- Dubbo Prospect
 - 13m at 5.2g/t Au from 15m in 21DBRC058
- Jim's Find South Prospect
 - 10m at 5.65g/t Au from 32m in 20JFWD041

All significant intercepts received for the quarter are tabulated in Appendix C.

EXPLORATION AND GROWTH

As Westgold transitions from its development phase the Board has turned its focus to expanding the business through exploration and growth. The Company currently has substantial mining and exploration tenure and continues to consolidate its strategic holdings across the Central Murchison region.

With a strong balance sheet due to accumulating free cashflow, the Company's focus can now shift from capital expenditure to greenfield exploration. As such during the quarter, the Company established a new Exploration and Growth business unit and made key appointments to lead this unit. The focus of this business unit is to explore, develop and/or acquire additional resources within the region that allows Westgold to leverage its extensive infrastructure and maximise the return on Group investment.

The Board of Westgold is committed to an aggressive exploration and growth strategy and now has the balance sheet to support it. As such Westgold is currently developing a strategic plan to invest \$80-\$100m on greenfield exploration over the next 3-4 years.

Alto Metals Limited

During the quarter, Westgold acquired an $\approx 8\%$ stake in junior explorer Alto Minerals Limited (ASX: AME) via a share purchase from Middle Island Resources. AME is a Sandstone focused exploration company without processing infrastructure that is advancing gold resources that are potentially within trucking distance of Westgold's Cue or Meekatharra plants.

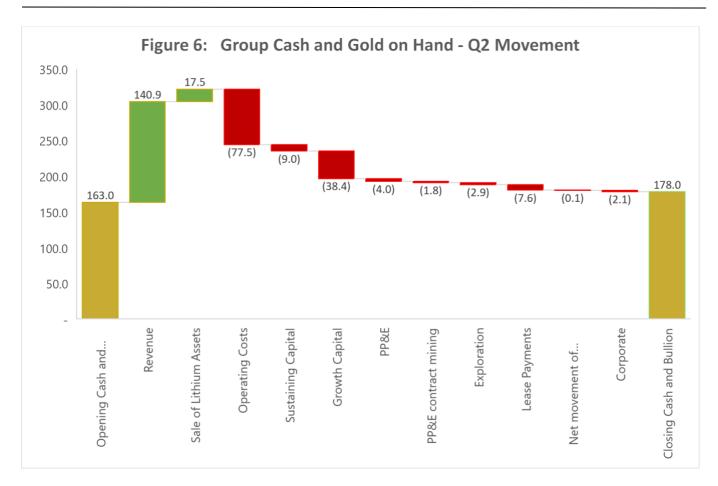
CORPORATE

Share Capital

Westgold's capital structure at the end of the quarter is summarised in **Table 3** below.

Table 3: Westgold Capital Structure at 31 March 2021

Security Type	Issued
Fully Paid Ordinary Shares	423,855,270
Performance Zepo's (unvested)	1,073,033
Performance Rights (unvested)	1,356,295


Divestments

During the quarter Westgold completed the final divestment of its non-core assets with the completion of the sale of its non-core lithium royalties and exploration rights to Reed Industrial Minerals for \$17.5 million.

Cash, Bullion and Liquid Assets

Westgold's cash and bullion grew to **\$178** million over the quarter. Figure 6 details key cash movements during the quarter:

Debt

Westgold currently has no corporate debt. The Company has lease commitments on some acquired plant and equipment under normal commercial terms with expected repayments of \approx \$16 million in the current year.

Hedging

Westgold continued to deliver into its hedges at a disproportionate rate (28.5%) of its output during the quarter and as such has reduced its overall hedge position to 150,000oz at an average A\$2,083 per ounce. Westgold only has 7% of its ore reserves hedged and the counterparty to all of Westgold's hedging is Citibank.

This announcement is authorised for release to the ASX by Peter Cook, Executive Chair.

Ends.

WESTGOLD INVESTOR RELATIONS ENQUIRIES

Peter Cook Executive Chair peter.cook@westgold.com.au Debbie Fullarton Chief Executive Officer debbie.fullarton@westgold.com.au Rod Corps Manager - IR rod.corps@westgold.com.au

Compliance and Forward-Looking Statements

Exploration Targets, Exploration Results and Mineral Resources

The information in this report that relates to Exploration Targets, Exploration Results and Mineral Resources is compiled by Westgold technical employees and contractors under the supervision of Mr. Jake Russell B.Sc. (Hons), who is a member of the Australian Institute of Geoscientists. Mr Russell is a full time employee to the company, and has sufficient experience which is relevant to the styles of mineralisation and types of deposit under consideration and to the activities which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australiasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Russell consents to the inclusion in this report of the matters based on his information in the form and context in which it appears. Mr Russell is eligible to participate in short and long term incentive plans of the company.

Ore Reserves

The information in this report that relates to Ore Reserves is based on information compiled by Mr. Anthony Buckingham B.Eng. (Mining Engineering) MAusIMM. Mr. Buckingham has sufficient experience which is relevant to the styles of mineralisation and types of deposit under consideration and to the activities which they are undertaking to qualify as a Competent Person as defined in the 2012 Editions of the "Australasian Code for Reporting of Exploration Results, Mineral Re- sources and Ore Reserves (JORC 2012)". Mr. Buckingham consents to the inclusion in this report of the matters based on his information in the form and context in which it appears. Mr. Buckingham is a full-time senior executive of the Company and is eligible to and may participate in short-term and long-term incentive plans of the Company as disclosed in its annual reports and disclosure documents.

Exploration Results

The information is extracted from the report entitled 'Exploration Highlights - 30 September 2019 Quarter' created by Westgold on 14 October 2019 and available to view on Westgold's website (www.westgold.com.au) and the ASX (www.asx.com.au). The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement.

The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Forward Looking Statements

Certain statements in this report relate to the future, including forward looking statements relating to Westgold's financial position and strategy. These forward-looking statements involve known and unknown risks, uncertainties, assumptions and other important factors that could cause the actual results, performance or achievements of Westgold to be materially different from future results, performance or achievements expressed or implied by such statements. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement and deviations are both normal and to be expected. Other than required by law, neither Westgold, their officers nor any other person gives any representation, assurance or guarantee that the occurrence of the events expressed or implied in any forward-looking statements will actually occur.

You are cautioned not to place undue reliance on those statements.

Appendix A – FGO Significant Intercept Tables

All widths are downhole. Coordinates are for hole collars. Grid is MGA 1994 Zone 50. Significant intervals are >5g/m for areas of known resources and >2g/m for exploration.

Fortnum Gold Operations

Mine/Lode	Hole	North	Eeast	RL	Intercept (Downhole)	From (m)	Dip/Azi
Starlight Und	lerground Mine						
Nightfall	NF1195RD01	7,198,811	636,759	205	7.2m at 1.53g/t Au	35	10/280
0	NF1195RD09	7,198,842	636,719	201	2.4m at 5.83g/t Au	0	19/254
	NF1195RD10	7,198,843	636,718	201	6m at 2.16g/t Au	65	15/273
	NF1195RD11	7,198,844	636,718	201	2.16m at 9.99g/t Au	52	12/289
	NF1195RD11	7,198,844	636,718	201	5m at 3.93g/t Au	66	12/289
	NF1195RD13	7,198,843	636,718	200	2m at 5.40g/t Au	0	-9/247
	NF1195RD14	7,198,843	636,718	200	2m at 3.34g/t Au	0	-14/269
	NF1195RD14	7,198,843	636,718	200	3m at 3.31g/t Au	85	-14/269
	NF1370EX04	7,198,901	636,529	368	2.2m at 2.86g/t Au	180	-59/037
Starlight	ST1065GC02	7,198,488	636,605	108	20.33m at 4.61g/t Au	88	-17/034
0	ST1065GC03	7,198,489	636,606	108	35m at 2.70g/t Au	105	-18/049
	ST1065GC04	7,198,488	636,606	108	9.7m at 4.27g/t Au	95	-16/057
					6m at 2.21g/t Au	120	
	ST1065GC06	7,198,666	636,542	79	10m at 1.39g/t Au	50	1/124
		, ,			9m at 3.27g/t Au	89	
					12.45m at 2.66g/t Au	123	
					7.1m at 1.56g/t Au	153	
					6.39m at 2.68g/t Au	170	
	ST1065GC07	7,198,666	636,542	79	2.68m at 2.03g/t Au	43	1/14
		, ,			8.8m at 2.68g/t Au	73	
					4m at 3.15g/t Au	102	
					5m at 1.68g/t Au	120	
					9m at 2.33g/t Au	128	
	ST1065GC08	7,198,666	636,542	79	6m at 4.79g/t Au	64	1/102
					4.6m at 2.93g/t Au	84	
					4.83m at 1.45g/t Au	110	
	ST1065GC11	7,198,668	636,541	79	4.79m at 7.09g/t Au	47	0/047
					7m at 2.57g/t Au	90	
	ST1086EX01	7,198,579	636,540	88	7.3m at 14.61g/t Au	80	-32/052
	ST1086EX03A	7,198,596	636,552	87	6.2m at 1.59g/t Au	109	-62/047
	ST1086EX04	7,198,579	636,540	88	7m at 1.86g/t Au	78	-32/078
					10m at 5.52g/t Au	104	
					3.74m at 3.36g/t Au	126	
	ST1086EX06A	7,198,595	636,553	87	4m at 3.98g/t Au	147	
					3m at 0.25g/t Au	248	
	ST1086EX08	7,198,578	636,540	88	17.7m at 6.21g/t Au	123	-45/102
					2.02m at 2.61g/t Au	163	
					2.22m at 2.29g/t Au	191	
					2m at 2.86g/t Au	199	
	ST1086EX09	7,198,578	636,540	88	5m at 1.10g/t Au	80	-55/107
	ST1086EX11	7,198,591	636,551	87	7.1m at 0.75g/t Au	243	-51/122
	ST1115N2GC01	7,198,632	636,632	122	33m at 3.05g/t Au	5	27/033
	ST1115N2GC02	7,198,632	636,632	122	12.5m at 1.24g/t Au	5	28/056
					12m at 3.33g/t Au	22	
	ST1115N2GC03	7,198,632	636,632	122	8m at 2.38g/t Au	4	27/074
					11.4m at 2.94g/t Au	22	
	ST1115N2GC04	7,198,632	636,632	121	6.6m at 2.97g/t Au	6	26/092

Mine/Lode	Hole	North	Eeast	RL	Intercept (Downhole)	From (m)	Dip/Azi
	ST1115N2GC05	7,198,632	636,632	122	5m at 2.93g/t Au	7	27/107
	ST1115N2GC06	7,198,603	636,634	121	3m at 2.10g/t Au	0	27/069
	ST1115N2GC07	7,198,603	636,634	121	12m at 1.94g/t Au	0	27/092
		.,,			2.42m at 3.41g/t Au	17	
					2m at 2.74g/t Au	24	
	ST1130RD04	7,198,693	636,538	134	3m at 4.09g/t Au	85	-45/115
	ST1130RD10	7,198,695	636,537	133	2.16m at 4.82g/t Au	86	-68/100
		1,100,000	000,001	100	3m at 8.52g/t Au	137	00,100
	ST1130RD11	7,198,693	636,538	133	6m at 2.26g/t Au	97	-61/122
		1,100,000	000,000	100	2m at 4.06g/t Au	135	01/122
Trev's	NF1370EX02	7,198,901	636,528	368	8.4m at 1.65g/t Au	178	-52/022
1107.0	111 101 02/102	1,100,001	000,020	000	6.46m at 2.14g/t Au	227	02,022
	TR1130RD01	7,198,715	636,520	137	7m at 1.65g/t Au	223	14/325
	TR1130RD04	7,198,715	636,520	136	4.7m at 3.37g/t Au	204	6/319
	TR1130RD08	7,198,715	636,520	136	4.73m at 1.29g/t Au	2	-2/312
		7,100,710	000,020	100	4.05m at 1.42g/t Au	10	2/012
	TR1220GC01	7,198,917	636,495	272	4m at 4.63g/t Au	78	-24/230
	11(12200001	7,150,517	000,400	212	6m at 14.25g/t Au	87	24/200
	TR1220GC02	7,198,918	636,495	272	19.4m at 1.58g/t Au	59	-28/262
	TR1220GC02	7,198,918	636,495	272	10m at 0.99g/t Au	66	-29/298
	TR1220GC04	7,198,919	636,495	273	6m at 1.29g/t Au	72	-27/306
	TR1245GC20	7,198,920	636,495	272	14.3m at 1.59g/t Au	58	-8/319
	TR1320WB06	7,199,108	636,500	327	3.5m at 3.77g/t Au	140	10/043
	TR1320WB13	7,199,108	636,499	325	3m at 1.89g/t Au	140	-23/024
	TR1320WB18	7,199,108	636,498	325	5m at 6.73g/t Au	132	-49/024
	11(152000010	7,133,100	030,430	525	2m at 2.52g/t Au	141	-43/020
Twilight	TW1270EX01	7,198,918	636,500	273	14m at 1.25g/t Au	141	-14/042
Twingin		7,130,310	030,300	215	10m at 8.50g/t Au	180	-14/042
	TW1270EX02	7,198,918	636,500	273	9.26m at 3.51g/t Au	126	-15053
		7,100,010	000,000	215	2.12m at 5.87g/t Au	254	10000
	TW1270EX03	7,198,918	636,500	273	5m at 1.64g/t Au	235	-16/060
	TW1270EX03	7,198,918	636,500	273	17.25m at 1.15g/t Au	235	-16/072
		7,150,510	000,000	215	2m at 3.03g/t Au	279	10/012
	TW1270EX05	7,198,918	636,500	273	6m at 2.06g/t Au	139	-23/044
	10012702703	7,150,510	000,000	215	9m at 1.50g/t Au	159	20/044
	TW1270EX07	7,198,917	636,500	273	2.58m at 2.23g/t Au	174	-24/058
	TW1270EX08	7,198,917	636,500	273	6.7m at 2.28g/t Au	100	-25/071
	11112/02/00	7,100,017	000,000	210	7.1m at 1.15g/t Au	245	20/011
	TW1270EX09	7,198,918	636,500	272	8m at 1.28g/t Au	168	-31/048
_	•		000,000			100	01/010
	evelopment - Surfa		0.40,000	505	E a a b b c b b b b b b b b b c b b b b c b b b c b c b c b c b c b c b c b c b c b c c b c c c c c c c c c c	07	00/000
Forrest	20FSTRC002	7,185,600	640,908	535	5m at 1.26g/t Au	37	-60/089
	0050700000	7 405 000	040.007	505	3m at 2.93g/t Au	65	60/000
	20FSTRC003	7,185,600	640,927	535	7m at 3.47g/t Au	5	-60/090
	0050700004	7 405 004	040.004	505	13m at 5.32g/t Au	31	<u> </u>
	20FSTRC004	7,185,621	640,904	535	6m at 1.85g/t Au	30	-60/084
	20FSTRC005	7,185,620	640,932	534	7m at 3.64g/t Au	21	-60/090
	20FSTRC006	7,185,640	640,868	536	13m at 1.01g/t Au	61	-60/088
	205050007	7 405 0 40	640.007	FOF	6m at 1.27g/t Au	75	E0/000
	20FSTRC007	7,185,640	640,887	535	8m at 2.17g/t Au	30	-59/089
					8m at 2.22g/t Au	46	
		7 405 0 40	040.000	505	4m at 1.61g/t Au	69	00/004
	20FSTRC008	7,185,640	640,908	535	10m at 1.24g/t Au	15	-60/091
					11m at 2.51g/t Au	26	
	0050500044	7 405 004	040.070	500	5m at 8.2g/t Au	41	00/000
	20FSTRC011	7,185,661	640,873	536	21m at 1.86g/t Au	52	-60/089
	20FSTRC012	7,185,660	640,913	535	17m at 1.8g/t Au	1	-60/090

Mine/Lode	Hole	North	Eeast	RL	Intercept (Downhole)	From (m)	Dip/Azi
	20FSTRC014	7,185,680	640,845	537	9m at 3.56g/t Au	94	-60/086
	20FSTRC017	7,185,680	640,906	535	5m at 1.03g/t Au	4	-60/090
					5m at 1.62g/t Au	12	
					5m at 1.29g/t Au	20	
	20FSTRC019	7,185,701	640,851	537	7m at 6.31g/t Au	58	-60/089
					5m at 2.48g/t Au	67	
					8m at 3.33g/t Au	76	
	20FSTRC020	7,185,701	640,901	536	8m at 1.01g/t Au	2	-60/093
					6m at 1.15g/t Au	11	
	20FSTRC021	7,185,720	640,843	537	12m at 3.37g/t Au	72	-60/086
	20FSTRC022	7,185,720	640,864	537	19m at 1.65g/t Au	38	-59/090
					7m at 3.29g/t Au	63	
	20FSTRC023	7,185,720	640,884	536	8m at 1.5g/t Au	19	-60/087
	20FSTRC024	7,185,720	640,903	536	9m at 1.47g/t Au	9	-58/089
	20FSTRC025	7,185,719	640,924	535	10m at 1.01g/t Au	17	-60/093
	20FSTRC026	7,185,741	640,874	536	7m at 1.71g/t Au	38	-60/090
	20FSTRC027	7,185,741	640,888	536	7m at 1.1g/t Au	10	-60/090
					5m at 1.04g/t Au	31	
	20FSTRC038	7,185,662	640,829	537	3m at 7.9g/t Au	106	-59/088
					11m at 2.39g/t Au	111	
					8m at 1.05g/t Au	126	

Appendix B – MGO Significant Intercepts Table

All widths are downhole. Coordinates are for hole collars. Grid is MGA 1994 Zone 50. Significant intervals are >5g/m for areas of known resources and >2g/m for exploration.

Meekatharra Gold Operations

Mine / Lode	Hole	North	East	RL	Intercept (Downhole)	From (m)	Dip/Azi
Paddy's Flat I	Vine						
Hendrix	20HXDD266	7,056,179	650,092	266	1m at 9.86g/t Au	25	-3/108
	20HXDD269	7,056,179	650,093	265	2m at 5.03g/t Au	26	-17/102
					6m at 4.16g/t Au	32	
					0.94m at 8.06g/t Au	55	
					1m at 31.41g/t Au	200	
					2.42m at 3.73g/t Au	272	
Mudlode	20MUDD178	7,056,444	650,419	196	4.29m at 5.59g/t Au	95	-28/117
					6m at 8.71g/t Au	105	
	20MUDD179	7,056,469	650,444	197	.55m at 10.79g/t Au	20	30/120
Prohibition	21PRDD001	7,056,337	650,021	127	14.79m at 4.06g/t Au	103	20/318
					.97m at 5.17g/t Au	120	
	21PRDD005	7,056,336	650,020	124	1.87m at 6.72g/t Au	54	-39/310
	21PRDD007	7,056,338	650,021	124	.93m at 7.24g/t Au	71	-23/297
	21PRDD010	7,056,337	650,021	124	3.88m at 8.65g/t Au	73	-82/282
					2.47m at 12.81g/t Au	106	
	21PRDD024	7,053,702	651,149	182	2.44m at 2.43g/t Au	19	-48/90
					6.4m at 3.26g/t Au	96	

Mine / Lode	Hole	North	East	RL	Intercept (Downhole)	From (m)	Dip/Azi
					1.9m at 3.00g/t Au	113	
					.83m at 6.87g/t Au	120	
Vivian's	20VIDD192	7,056,688	650,538	228	.47m at 15.67g/t Au	3	0/269
	20VIDD207	7,056,449	650,446	195	.25m at 46.67g/t Au	94	-50202
	20VIDD208	7,056,450	650,446	195	2.31m at 9.24g/t Au	65	-60/209
					4m at 4.25g/t Au	141	
	20VIDD210	7,056,450	650,445	195	2m at 3.74g/t Au	116	-72/179
					2.24m at 10.02g/t Au	148	
	20VIDD212	7,056,391	650,252	246	.9m at 10.50g/t Au	5	-41/188
					.68m at 57.93g/t Au	16	
					8m at 3.96g/t Au	23	
					3.24m at 71.95g/t Au	58	
					1m at 5.14g/t Au	102	
					.28m at 31.96g/t Au	115	
	20VIDD213	7,056,391	650,253	246	2.1m at 7.29g/t Au	5	-43/165
					2.78m at 5.80g/t Au	65	
	20VIDD214	7,056,423	650,298	246	2.82m at 2.55g/t Au	15	-54/178
					1.26m at 9.87g/t Au	96	
					1.83m at 10.20g/t Au	113	
					4.2m at 4.69g/t Au	120	
					.96m at 18.05g/t Au	132	
	20VIDD217	7,056,303	650,188	244	.96m at 12.36g/t Au	5	-10/29
					1.24m at 19.29g/t Au	16	
					4.59m at 5.60g/t Au	23	
					2.66m at 2.03g/t Au	55	
					2.54m at 30.30g/t Au	82	
	20VIDD218	7,056,303	650,188	244	2m at 8.01g/t Au	1	-12/23
					2.23m at 6.73g/t Au	19	
					2.58m at 11.81g/t Au	24	
					.51m at 11.30g/t Au	76	
					.42m at 31.70g/t Au	80	
				1	1m at 5.04g/t Au	117	
					1.4m at 9.55g/t Au	135	
				1	2.47m at 15.94g/t Au	147	
				1	2.2m at 2.45g/t Au	155	
				1	1.73m at 15.26g/t Au	160	
	20VIDD219	7,056,303	650,188	244	1m at 9.41g/t Au	45	-15/34
	20VIDD221	7,056,389	650,250	246	.24m at 103.00g/t Au	4	-17/204
	20VIDD222	7,056,391	650,253	246	3.57m at 5.69g/t Au	8	-27/151
	20VIDD223	7,056,391	650,253	246	1.48m at 15.33g/t Au	8	-41/137
			•	1	.62m at 18.32g/t Au	12	
	20VIDD224	7,056,390	650,254	246	1.54m at 14.48g/t Au	1	-41/101
	20VIDD225	7,056,391	650,256	246	1m at 20.80g/t Au	0	-56/66
		,,			1.03m at 32.59g/t Au	19	
					.37m at 147.00g/t Au	36	

Mine / Lode	Hole	North	East	RL	Intercept (Downhole)	From (m)	Dip/Azi
					1m at 8.13g/t Au	85	
					.36m at 17.90g/t Au	147	
					3.91m at 4.59g/t Au	178	
	20VIDD227	7,056,392	650,256	245	.9m at 57.16g/t Au	6	-38/73
	20VIDD228	7,056,391	650,256	246	2.81m at 2.29g/t Au	18	-39/44
					3.74m at 22.24g/t Au	31	
					4.43m at 13.18g/t Au	42	
					1m at 15.15g/t Au	95	
	20VIDD229	7,056,391	650,253	246	.72m at 54.26g/t Au	6	-51168
					2m at 3.62g/t Au	10	
					.38m at 74.00g/t Au	16	
					4m at 1.91g/t Au	36	
					1m at 7.22g/t Au	49	
					7m at 4.16g/t Au	58	
	20VIDD230	7,056,391	650,253	246	1.29m at 4.18g/t Au	4	-50/151
					.3m at 76.30g/t Au	7	
					.3m at 88.24g/t Au	14	
					.8m at 22.70g/t Au	26	
					1m at 8.10g/t Au	68	
					1m at 11.83g/t Au	76	
	20VIDD231	7,056,391	650,253	246	.9m at 47.87g/t Au	8	-62/132
					1m at 229.30g/t Au	18	
					1m at 56.05g/t Au	21	
					1.23m at 166.27g/t Au	25	
					3.15m at 16.23g/t Au	10	
	20VIDD233a	7,056,424	650,296	246	.81m at 7.17g/t Au	15	-46/223
					2.82m at 2.25g/t Au	26	
					3.23m at 43.77g/t Au	37	
	20VIDD234	7,056,424	650,297	246	.62m at 25.54g/t Au	9	-40/27
					1m at 24.33g/t Au	25	
					1.05m at 6.37g/t Au	33	
					1.88m at 20.39g/t Au	36	
	20VIDD236	7,056,670	650,524	227	3.22m at 4.71g/t Au	1	-60/316
	20VIDD237	7,056,669	650,526	226	.73m at 47.25g/t Au	12	-52/16
					7.25m at 7.19g/t Au	51	
	20VIDD238	7,056,689	650,544	226	4m at 1.53g/t Au	36	-57/326
	20VIDD239	7,056,689	650,545	226	.71m at 26.28g/t Au	60	-67/27
	20VIDD240	7,056,689	650,544	226	3.57m at 6.29g/t Au	51	-52/340
	20VIDD242	7,056,690	650,545	227	3.87m at 3.40g/t Au	40	-57/31
	1		-		2m at 2.58g/t Au	49	
				1	1m at 6.23g/t Au	75	
				1	5.61m at 12.80g/t Au	79	
	20VIDD244	7,056,690	650,545	227	4.19m at 11.60g/t Au	35	-51/31
	20VIDD245	7,056,690	650,545	227	5.45m at 2.57g/t Au	85	-45/0
	20VIDD246	7,056,690	650,545	227	1.43m at 7.15g/t Au	44	.0,0

ine / Lode	Hole	North	East	RL	Intercept (Downhole)	From (m)	Dip/Azi
					12.84m at 2.77g/t Au	98	
					11.74m at 4.06g/t Au	121	-46/13
	20VIDD244	7,056,690	650,545	227	4.19m at 11.60g/t Au	35	-51/31
	20VIDD248	7,056,690	650,545	227	10.05m at 6.59g/t Au	64	-42/5
	20VIDD251	7,056,669	650,526	226	1.36m at 38.98g/t Au	43	-76/158
	20VIDD294	7,056,449	650,445	195	1.62m at 4.72g/t Au	48	-47/218
					.23m at 56.40g/t Au	64	
					3.7m at 11.29g/t Au	100	
					2.34m at 3.85g/t Au	138	
	20VIDD295	7,056,449	650,446	195	1m at 9.10g/t Au	60	-69/20
					.27m at 49.00g/t Au	67	
					1.53m at 7.87g/t Au	141	
	20VIDD297	7,056,448	650,445	195	1m at 5.93g/t Au	156	-37/203
	20VIDD298W1	7,056,420	650,426	138	3.75m at 2.18g/t Au	101	-57/19
		, , -	, -		3.45m at 2.68g/t Au	153	
					1.87m at 46.18g/t Au	214	
	21VIDD037	7,056,538	650,374	195	1.33m at 20.65g/t Au	56	37/55
	21VIDD039	7,056,537	650,376	194	.35m at 19.00g/t Au	58	22/85
	21VIDD057	7,056,317	650,156	335	.85m at 29.98g/t Au	4	27198
	211188007	1,000,011	000,100	000	.61m at 53.20g/t Au	23	27100
					.87m at 6.92g/t Au	33	
outh Emu	- Triton Mine 21TRDD001	6,998,224	625,685	335	2m at 2.41g/t Au	10	-13/28
	21TRDD002	6,998,225	625,686	340	8m at 1.00g/t Au	4	55/294
			,		6m at 0.98g/t Au	15	
					5.88m at 3.09g/t Au	41	
	21TRDD003	6,998,225	625,686	338	2.11m at 3.86g/t Au	29	20/294
	21TRDD004	6,998,310	625,717	323	13.76m at 3.75g/t Au	85	45/220
	21TRDD005	6,998,225	625,686	338	13.44m at 2.91g/t Au	32	42/320
	21TRDD007	6,998,226	625,687	337	3.59m at 1.50g/t Au	12	18/337
					2.69m at 2.39g/t Au	55	
	21TRDD008	6,998,310	625,717	323	4.98m at 1.38g/t Au	71	53/237
	21TRDD009	6,998,312	625,717	319	2.35m at 2.22g/t Au	45	-15/25
					3.94m at 1.17g/t Au	52	
	21TRDD013	6,998,312	625,717	323	8.2m at 6.21g/t Au	50	45/267
	21TRDD014	6,998,313	625,717	319	8.05m at 2.83g/t Au	38	-17/28
	21TRDD015	6,998,315	625,718	324	9.6m at 2.25g/t Au	78	67/300
	21TRDD018	6,998,312	625,717	320	9.57m at 2.54g/t Au	41	13/303
	21TRDD019	6,998,315	625,717	319	15.85m at 2.03g/t Au	62	-9/330
	21TRDD020	6,998,315	625,717	322	3.14m at 2.56g/t Au	70	26/334
					11.46m at 4.13g/t Au	81	
	21TRDD013	6,998,312	625,717	323	8.2m at 6.21g/t Au	50	45/267
	21TRDD014	6,998,313	625,717	319	8.05m at 2.83g/t Au	38	-17/28
	21TRDD015	6,998,315	625,718	324	9.6m at 2.25g/t Au	78	67/300

Mine / Lode	Hole	North	East	RL	Intercept (Downhole)	From (m)	Dip/Azi
	21TRDD022	6,998,315	625,717	321	18.09m at 2.72g/t Au	100	20/343
	21TRDD025	6,998,315	625,718	320	7.02m at 3.59g/t Au	50	8/323
Exploration							
Baileys Island North	20BIRC001	7,023,019	634,221	445	2m at 1.19g/t Au	15	-55/284
	20BIRC002	7,023,007	634,223	445	7m at 1.18g/t Au	0	-56/283
	20BIRC002	7,023,007	634,223	445	4m at 1.04g/t Au	23	-56/283
	20BIRC005	7,022,978	634,227	446	6m at 1.18g/t Au	10	-60/276
					2m at 1.67g/t Au	22	
	20BIRC006	7,022,980	634,215	447	2m at 1.33g/t Au	27	-60/279
	20BIRC008	7,022,992	634,253	445	6m at 2.26g/t Au	1	-60/96
	20BIRC014	7,022,944	634,246	448	7m at 7.43g/t Au	46	-70/280
	20BIRC016	7,022,944	634,226	448	5m at 1.01g/t Au	1	-49/285
Banjo Bore	21MNRC001	7,081,529	662,946	509	4m at 1g/t Au	8	-60/138
					3m at 1.14g/t Au	22	
	21MNRC002	7,081,544	662,933	509	13m at 2.43g/t Au	16	-51/137
		,,.	,		2m at 1.1g/t Au	42	
	21MNRC003	7,081,523	662,925	509	19m at 1.02g/t Au	8	-55/135
	21MNRC004	7,081,534	662,914	509	16m at 4.85g/t Au	32	-55/136
	21MNRC005	7,081,514	662,906	509	7m at 1.08g/t Au	13	-55/138
	21MNRC006	7,081,526	662,896	509	3m at 1.43g/t Au	34	-55/141
	21MNRC007	7,081,498	662,894	509	7m at 1.03g/t Au	18	-55/136
	211111110007	7,001,400	002,004	000	2m at 1.1g/t Au	26	00/100
	21MNRC008	7,081,516	662,877	509	6m at 2.77g/t Au	48	-55/137
	21MNRC009	7,081,468	662,867	509	2m at 1.02g/t Au	10	-50/138
	21MNRC010	7,081,479	662,858	509	4m at 1.04g/t Au	25	-51/137
	21MNRC010	7,081,479	662,848	509	6m at 3.57g/t Au	30	-50/137
Resource Dev		7,001,409	002,040	509	om at 3.57g/t Au	30	-50/137
Easter Gift	20NNRC106	7,025,450	634,210	453	4m at 3.86g/t Au	0	-51/270
Edotor Ont	20NNRC123	7,025,733	634,323	449	4m at 1.34g/t Au	15	-51/128
	20NNRC124	7,025,710	634,355	448	3m at 8.2g/t Au	37	-51/127
	20NNRC125	7,025,710	634,367	447	4m at 1.15g/t Au	31	-51/127
	20101110120	7,020,702	004,007	/	2m at 1.3g/t Au	38	51/121
	20NNRC126	7,025,775	634,333	448	3m at 1.07g/t Au	5	-51/128
	20NNRC126 20NNRC132			446		28	-51/128
		7,025,769	634,413		2m at 2.33g/t Au		
	20NNRC133	7,025,776	634,402	445	8m at 2.08g/t Au	18	-50/125
Nannine Tonalite	20NNRC078	7,026,253	632,728	454	4m at 1.16g/t Au	27	
		, = = = , = = = =	,· - ·		2m at 1.03g/t Au	8	-61/312
	20NNRC083	7,026,299	632,476	451	4m at 1.15g/t Au	11	-61/288
	20NNRC084	7,026,305	632,462	451	2m at 1.21g/t Au	9	-60/289
	20NNRC086	7,026,269	632,433	451	2m at 1.15g/t Au	21	-60/288

Mine / Lode	Hole	North	East	RL	Intercept (Downhole)	From (m)	Dip/Azi
Three Sisters	047000000	7 004 040	004 500	440			
South	21TSRC002	7,024,916	634,529	440	11m at 1.03g/t Au	13	-45/67
					4m at 1.01g/t Au	31	-45/07
	21TSRC005	7,025,009	634,470	441	3m at 1.08g/t Au	36	-50/64
	21TSRC006	7,023,003	634,561	441	12m at 1.11g/t Au	4	-45/242
	2110100000	7,024,001	004,001		4m at 1.06g/t Au	29	70/272
Baileys Island					4111 at 1.009/1 Au	23	
South	21BIRC001	7,022,333	634,536	441			
					3m at 3.83g/t Au	98	-51/280
	21BIRC002	7,022,222	634,518	441	7m at 1.32g/t Au	107	-50/280
	21BIRC003	7,022,180	634,506	441	4m at 2.12g/t Au	119	-50/280
	21BIRC004	7,022,031	634,313	440	5m at 2.96g/t Au	134	-50/325
	21BIRC005	7,022,014	634,289	440	7m at 3.66g/t Au	129	-49/324
	21BIRC006	7,021,978	634,229	440	8m at 1.76g/t Au	70	-50/324
					2m at 6.47g/t Au	131	
Caledonian							
South	20NNRC092	7,024,999	633,388	446	7m at 3.5g/t Au	0	-59/91
	20NNRC094	7,025,000	633,367	446	13m at 1.29g/t Au	22	-59/93
	20NNRC168	7,023,000	633,360	446	8m at 1.88g/t Au	26	-60/93
	20NNRC170	7,024,989	633,387	446	5m at 1.82g/t Au	5	-59/89
	20NNRC171	7,025,061	633,368	447	4m at 2.2g/t Au	14	-53/82
	20NNRC172	7,025,040	633,366	446	3m at 3.11g/t Au	18	-54/94
	20111110172	7,020,010	000,000	110	2m at 2.91g/t Au	34	01/01
	20NNRC173	7,025,031	633,365	446	8m at 6.15g/t Au	31	-54/93
	20NNRC174	7,025,019	633,361	446	5m at 1.19g/t Au	36	-60/90
		.,,			4m at 2.07g/t Au	43	
	20NNRC175	7,025,019	633,364	446	10m at 2.02g/t Au	28	-49/92
	20NNRC176	7,025,019	633,368	446	9m at 6.56g/t Au	23	-43/91
	20NNRC177	7,025,010	633,365	446	9m at 1.6g/t Au	26	-59/93
	20NNRC178	7,025,010	633,372	446	10m at 1.43g/t Au	16	-60/89
	20NNRC179	7,025,006	633,383	446	16m at 1.81g/t Au	8	-45/35
	20NNRC180	7,025,007	633,384	446	14m at 2.21g/t Au	5	-59/45
	20NNRC181	7,024,980	633,362	446	3m at 7.27g/t Au	22	-61.92
	20NNRC182	7,024,980	633,368	446	7m at 1.58g/t Au	17	-60/90
	20NNRC184	7,024,980	633,388	446	3m at 1.77g/t Au	17	-60/91
	20NNRC191	7,024,960	633,372	446	5m at 1.23g/t Au	5	-60/94
Caledonian South Splay	20NNRC155	7,024,526	633,313	447	5m at 3.48g/t Au	19	-59/89
Golden Shamrock	20GORC056	7,026,288	632,448	451	4m at 1.45g/t Au	11	-75/286
	20GORC068	7,026,323	632,471	451	4m at 2.61g/t Au	7	-75/287
	20GORC069	7,026,319	632,486	451	2m at 2.96g/t Au	19	-75/286
	20GORC079	7,026,365	632,469	452	4m at 1.56g/t Au	1	-74/290
Nannine Reef	20NNRC101	7,024,481	633,644	443	5m at 1.08g/t Au	10	-49/269

N

Mine / Lode	Hole	North	East	RL	Intercept (Downhole)	From (m)	Dip/Azi
	20NNRC215	7,024,458	633,622	442	3m at 6.83g/t Au	18	-60/091
	20NNRC218	7,024,488	633,624	443	4m at 5.58g/t Au	25	-60/096
	20NNRC219	7,024,498	633,618	443	2m at 5.73g/t Au	44	-60/091
	20NNRC222	7,024,539	633,630	443	2m at 3.66g/t Au	29	-60/095
	20NNRC227	7,024,596	633,655	444	3m at 1.8g/t Au	3	-60/109
	20NNRC230	7,024,621	633,656	445	4m at 3.24g/t Au	9	-60/084
	20NNRC231	7,024,637	633,651	444	5m at 1.18g/t Au	20	-60/091
	20NNRC236	7,024,678	633,655	445	2m at 3.53g/t Au	18	-51/091
	20NNRC238	7,024,707	633,655	445	4m at 4.24g/t Au	27	-60/087
	20NNRC243	7,024,747	633,672	445	6m at 16.82g/t Au	19	-60/093
	20NNRC245	7,024,755	633,670	445	5m at 7.35g/t Au	22	-55/088
	20NNRC246	7,024,755	633,679	446	3m at 2.83g/t Au	9	-50/093
	20NNRC247	7,024,779	633,678	445	4m at 1.39g/t Au	21	-59/096
	20NNRC250	7,024,827	633,686	445	5m at 1.37g/t Au	24	-60/089
	20NNRC254	7,024,858	633,693	446	3m at 17.77g/t Au	19	-50/094
	20NNRC258	7,024,528	633,656	444	5m at 1.09g/t Au	13	-51/262
	20NNRC265A	7,024,688	633,677	445	3m at 3.23g/t Au	13	-50/264
	20NNRC268	7,024,678	633,659	444	5m at 1.44g/t Au	12	-49/088
	20NNRC270	7,024,738	633,686	446	2m at 3.25g/t Au	7	-50/267
	20NNRC273	7,024,817	633,705	446	4m at 2.05g/t Au	9	-49/277
	20NNRC277	7,024,867	633,701	446	7m at 1.56g/t Au	11	-60/088
	20NNRC279	7,024,877	633,699	446	3m at 2.9g/t Au	20	-61/088
	20NNRC280	7,024,877	633,707	446	2m at 2.86g/t Au	10	-61/090
	20NNRC286	7,024,917	633,710	447	5m at 1.3g/t Au	17	-61/092
	20NNRC288	7,024,929	633,717	447	6m at 1.74g/t Au	12	-59/091
	20NNRC294	7,024,967	633,730	448	3m at 7.46g/t Au	12	-61/093
	20NNRC299	7,025,017	633,733	449	3m at 2.73g/t Au	27	-55/092
	20NNRC319	7,025,171	633,795	457	7m at 2.28g/t Au	12	-49/268
	20NNRC324	7,025,114	633,769	453	4m at 1.38g/t Au	17	-60/090
	20NNRC331	7,025,366	633,788	464	5m at 2.57g/t Au	16	-50/090
	20NNRC332	7,025,376	633,793	464	10m at 1.26g/t Au	10	-50/090
	20NNRC333	7,025,387	633,792	463	7m at 7.02g/t Au	13	-50-91
	20NNRC334	7,025,396	633,794	463	2m at 3.82g/t Au	16	-51/094
	20NNRC339	7,025,424	633,788	462	5m at 1.39g/t Au	39	-61/088
	20NNRC343	7,025,385	633,813	466	10m at 1.87g/t Au	13	-50/271
	20NNRC343	7,025,385	633,813	466	2m at 13.81g/t Au	30	-50/271
	20NNRC344	7,025,398	633,824	466	12m at 1.77g/t Au	30	-50/268
	20NNRC345	7,025,458	633,822	464	9m at 2g/t Au	18	-50/281
	20NNRC347	7,025,477	633,824	464	6m at 1.58g/t Au	48	-55/269
	20NNRC361	7,025,527	633,760	462	4m at 2.76g/t Au	13	-51.271
	20NNRC365	7,024,786	633,688	446	4m at 1.27g/t Au	8	-58/085
Three Sisters	20TSRC007	7,025,688	634,406	447	8m at 1.86g/t Au	22	-60/125
	20TSRC015	7,025,592	634,422	448	5m at 1.4g/t Au	8	-60/125
	20TSRC016	7,025,574	634,413	447	5m at 2.74g/t Au	8	-60/127
	20TSRC017	7,025,557	634,403	447	11m at 1.62g/t Au	4	-60/128

Appendix C – CGO Significant Intercepts Table

Cue Gold Operations

All widths are downhole. Coordinates are for hole collars. Grid is MGA 1994 Zone 50. Significant intervals are >5g/m for areas of known resources and >2g/m for exploration.

Mine/Lode	Hole	North	East	RL	Intercept (Downhole)	From (m)	Dip
Big Bell Mine							
Big Bell	20BBDD0003	6,977,605	564,709	-51	7m at 2.83g/t Au	0	21/270
2.9 201	20222200000	0,011,000	00 1,1 00	0.	8.65m at 1.37g/t Au	16	2.7210
	20BBDD0045	6,977,775	564,718	-172	11.37m at 2.80g/t Au	154	-14/91
	20000000	0,011,110	001,710		6.18m at 1.89g/t Au	173	1 1/01
	20BBDD0046	6,978,049	564,940	-148	17.1m at 5.59g/t Au	140	-28/90
	20BBDD0047	6,977,775	564,717	-172	23m at 4.4g/t Au	142	-9/99
	20BBDD0048	6,978,026	564,930	-145	24.95m at 4.24g/t Au	143	-32/99
	20BBDD0049	6,977,775	564,718	-172	15m at 3.62g/t Au	159	-17/100
	20000000	0,011,110	001,710		6.36m at 2.77g/t Au	177	11/100
	20BBDD0050	6,978,002	564,921	-141	0.93m at 10.3g/t Au	106	-25/90
	20000000	0,010,002	001,021		19m at 4.47g/t Au	112	20,00
					5.3m at 1.61g/t Au	133	
	20BBDD0052	6,978,002	564,921	-171	2.5m at 11.43g/t Au	121	-33/90
	200000002	0,010,002	004,021	171	30m at 6.17g/t Au	133	00,00
	20BBDD0053	6,977,775	564,718	-172	11.1m at 4.04g/t Au	169	-22/90
	200000000	0,011,110	304,710	112	7.87m at 2.0g/t Au	186	22/30
	20BBDD0054	6,977,979	564,911	-138	35.18m at 4.88g/t Au	131	-37/90
	20BBDD0056	6,977,979	564,911	-138	6.87m at 5.99g/t Au	150	-43/91
	2000000000	0,311,313	304,311	-150	2.5m at 7.81g/t Au	192	-40/91
					4m at 1.85g/t Au	200	
	20BBDD0057	6,977,791	564,791	-140	1.53m at 4.67g/t Au	103	-22/77
	2000000000	0,377,731	304,731	-140	19m at 3.07g/t Au	103	-22/11
	20BBDD0058	6,977,882	564,831	-131	45.15m at 3.48g/t Au	100	-25/90
	20BBDD0059	6,977,791	564,791	-14-	3.35m at 6.58g/t Au	103	-38/77
	200000000	0,011,101	504,751	17	22.5m at 1.96g/t Au	154	30/11
	20BBDD0060	6,977,867	564,825	-129	16.53m at 2.34g/t Au	137	-39/95
	200000000	0,011,001	004,020	120	26m at 3.51g/t Au	157	00/00
	20BBDD0061	6,977,791	564,790	-140	7m at 1.71g/t Au	118	-35/90
	200000000	0,011,101	004,700	140	25.15m at 2.76g/t Au	134	00/00
	20BBDD0062	6,977,916	564,847	-134	11m at 1.84g/t Au	163	-41/85
	200000000	0,011,010	001,011	101	11.84m at 2.91g/t Au	184	11/00
					8m at 2.68g/t Au	198	
					3m at 1.82g/t Au	208	
					8.93m at 2.03g/t Au	216	
					1.98m at 5.91g/t Au	233	
	20BBDD0063	6,977,791	564,790	-140	8m at 1.63g/t Au	137	-41/90
		5,5.7,701	001,700		2.65m at 2.57g/t Au	152	
					11m at 3.16g/t Au	158	
	20BBDD0064	6,977,916	56,487	-134	5.56m at 2.00g/t Au	195	-45/107
		0,011,010			37m at 3.26g/t Au	206	
					14m at 1.98g/t Au	246	
	20BBDD0065	6,977,828	564,839	-151	9.98m at 1.10g/t Au	67	-20/96
					22.65m at 2.62g/t Au	80	,
	20BBDD0066	6,977,784	564,737	-170	6m at 2.23g/t Au	128	-2/87
		-,,			10.52m at 2.50g/t Au	141	
	20BBDD0067	6,977,827	564,839	-151	10.79m at 1.34g/t Au	95	-37/97
					5.87m at 2.11g/t Au	110	

Mine/Lode	Hole	North	East	RL	Intercept (Downhole)	From (m)	Dip
	20BBDD0068	6,977,784	564,737	-171	15m at 1.85g/t Au	151	-12/87
	20BBDD0008	6,978,002	564,921	-141	18.79m at 4.04g/t Au	155	-39/89
	200000000	0,010,002	304,321	141	3m at 2.27g/t Au	187	00/00
	20BBDD0070	6,978,049	564,940	-148	20.83m at 3.36g/t Au	156	-36/91
	20BBDD0072	6,978,048	564,940	-148	3m at 17.30g/t Au	205	-41/90
	2000000000	0,010,010	00 1,0 10	110	6m at 2.14g/t Au	224	11,00
	20BBDD0073	6,978,102	564,980	-228	12m at 4.20g/t Au	145	-21/78
	20BBDD0074	6,978,102	564,979	-228	11.25m at 4.08g/t Au	136	-19/87
	20BBDD0075	6,978,101	564,979	-228	13.44m at 2.29g/t Au	133	-17/96
	20BBDD0077	6,978,101	564,979	-228	5m at 1.53g/t Au	171	-21/103
	21BBDD0001	6,978,102	564,980	-228	4m at 3.88g/t Au	189	-25/68
	21BBDD0003	6,978,101	564,979	-228	3.83m at 1.33g/t Au	175	-26/85
	21BBDD0004	6,978,102	564,979	-228	10m at 3.93g/t Au	167	-33/86
	21BBDD0005	6,978,026	564,930	-145	8m at 4.22g/t Au	194	-41/90
	21BBDD0006	6,978,026	564,930	-145	24.67m at 2.17g/t Au	197	-46/197
					2.65m at 4.30g/t Au	237	
	21BBDD0007	6,977,979	564,911	-138	21.20m at 2.56g/t Au	202	-46/88
		, , , _ , _	,		3m at 6.08g/t Au	241	
	21BBDD0020	6,977,979	564,911	-138	18m at 2.40g/t Au	227	-51/90
	21BBDD0007	6,977,979	564,911	-138	21.20m at 2.56g/t Au	202	-46/88
		, ,	,		3m at 6.08g/t Au	241	
	21BBDD0020	6,977,979	564,911	-138	18m at 2.40g/t Au	227	-51/90
Comet							
Pinnacles	20PNDD0032	6,953,225	603,001	342	5 70m at 2 2a/t Au	173	-25/300
FILINACIES	20PNDD0032 20PNDD0034		603,001	342	5.70m at 3.2g/t Au	188	
	20PNDD0034 20PNDD0036	6,953,225		342	17.65m at 1.98g/t Au	100	-18/291
		6,953,225	603,001	342	8.00m at 3.15g/t Au	194	-23/280
Resource De	finition						
Coventry	20CVRC019	6,974,870	579,085	415	5m at 2.22g/t Au	43	-60/270
	20CVRC030	6,975,060	579,130	416	6m at 1.16g/t Au	7	-60/269
	20CVRC031	6,975,080	579,130	416	11m at 2.06g/t Au	8	-61/270
	20CVRC040	6,975,170	579,165	416	7m at 11.77g/t Au	16	-60/270
	20CVRC043	6,975,170	579,020	416	2m at 2.61g/t Au	8	-60/274
		6,975,170	579,020	416	5m at 1.48g/t Au	14	
	20CVRC045	6,975,190	579,020	416	7m at 1.55g/t Au	17	-60/271
	20CVRC046	6,975,190	579,165	416	5m at 1.13g/t Au	8	-60/271
	20CVRC057	6,975,720	579,248	416	5m at 1.06g/t Au	9	-60/275
	20CVRC059	6,975,730	579,270	416	3m at 1.93g/t Au	29	-59/268
	20CVRC068	6,975,760	579,275	416	5m at 1.19g/t Au	27	-60/266
	20CVRC075	6,975,780	579,268	416	5m at 1.56g/t Au	10	-61/267
	20CVRC093	6,975,880	579,282	416	6m at 1.42g/t Au	41	-60/269
	20CVRC095	6,975,890	579,275	416	14m at 1.21g/t Au	21	-62/273
					5m at 2.71g/t Au	61	
	20CVRC096	6,975,900	579,282	416	4m at 1.43g/t Au	30	-60/271
	20CVRC097	6,975,910	579,280	417	12m at 9.28g/t Au	33	-60/274
	20CVRC099	6,975,930	579,242	417	3m at 2.26g/t Au	9	-61/271
	20CVRC100	6,975,940	579,280	417	6m at 2.69g/t Au	36	-59/280
	20CVRC102	6,975,960	579,280	417	3m at 1.9g/t Au	39	-60/270
	20CVRC105	6,976,000	579,255	417	7m at 2.7g/t Au	20	-61/270
City of	20SYRC019	6,973,492	579,048	416	2m at 2 6Ea/t Au	40	60/270
Sydney	20SYRC022	6,973,512	579,061	416	2m at 3.65g/t Au 4m at 2.63g/t Au	40 48	-60/270 -60/271
	20SYRC022 20SYRC030A			416		48	-60/271
	2031 KC030A	6,973,523	579,084 579,049	416	4m at 1.35g/t Au 3m at 2.28g/t Au	4 2	-61/270
	20570004	6 073 550				· /	-01/2/0
	20SYRC034	6,973,552 6,973,553					
	20SYRC036	6,973,553	579,090	416	5m at 1.42g/t Au	8	-60/269

Mine/Lode	Hole	North	East	RL	Intercept (Downhole)	From (m)	Dip
					7m at 14.75g/t Au	40	
	20SYRC043	6,973,592	579,058	416	5m at 1.18g/t Au	6	-60/270
	20SYRC046	6,973,601	579,071	417	2m at 5.2g/t Au	60	-77/269
	20SYRC056	6,973,533	579,060	416	5m at 1.35g/t Au	9	-60/270
	20SYRC061	6,973,543	579,085	416	5m at 1.19g/t Au	27	-61/272
	20SYRC063	6,973,553	579,058	416	3m at 3.83g/t Au	41	-61/269
	20SYRC064	6,973,553	579,079	416	6m at 1.13g/t Au	42	-60/269
	20SYRC065	6,973,552	579,096	416	26m at 2.46g/t Au	44	-60/271
	20SYRC066	6,973,562	579,054	416	10m at 14.8g/t Au	3	-61/270
	20SYRC069	6,973,572	579,039	416	2m at 3.58g/t Au	3	-60/269
					3m at 2.87g/t Au	11	
					3m at 11.79g/t Au	16	
	20SYRC071	6,973,573	579,078	416	6m at 10.1g/t Au	46	-59/270
	20SYRC077	6,973,592	579,068	416	8m at 1.18g/t Au	22	-60/273
	20SYRC079	6,973,592	579,108	416	3m at 1.78g/t Au	67	-60/270
	20SYRC091	6,973,632	579,067	416	12m at 1.17g/t Au	2	-61/269
Exploration			,		5		
Coventry	20CVST033	6,975,300	578,850	416	4m at 4.9g/t Au	16	-56/270
j	20CVST037	6,975,750	579,075	416	8m at 0.55g/t Au	28	-56/271
Cuddingwarr a South	21CDRC001	6,969,824	579,656	423	2m at 1.04g/t Au	41	-60/276
	21CDRC002	6,969,824	579,645	423	3m at 1.16g/t Au	26	-61/273
	21CDRC004	6,970,318	579,833	420	2m at 1.67g/t Au	26	-60/270
	21CDRC004	6,970,318	579,833	420	11m at 1g/t Au	31	-60/270
	21CDRC005	6,970,319	579,843	420	7m at 2.54g/t Au	48	-60/274
	21CDRC006	6,970,318	579,827	420	5m at 1.41g/t Au	19	-61/280
	2102100000	0,010,010	010,021	.20	2m at 1.1g/t Au	27	0.7200
Dubbo	21DBRC051	6,973,521	578,731	417	2m at 1.15g/t Au	6	-52/293
20000	21DBRC052	6,973,535	578,743	417	2m at 1.25g/t Au	4	-60/331
	21DBRC053	6,973,550	578,762	417	3m at 1.02g/t Au	4	-61/297
	21DBRC055	6,973,561	578,791	416	2m at 1.15g/t Au	44	-60/302
	21DBRC056	6,973,569	578,775	416	7m at 1.1g/t Au	13	-61/306
	2122100000	0,010,000	010,110		4m at 1.52g/t Au	35	01/000
	21DBRC057	6,973,583	578,760	417	2m at 1.1g/t Au	6	-60/303
	21DBRC058	6,973,575	578,797	416	13m at 5.2g/t Au	15	-60/301
	212210000	3,57 3,07 3	010,101		8m at 3.51g/t Au	29	00,001
	21DBRC059	6,973,587	578,777	416	2m at 1.15g/t Au	7	-59/300
Fairlight	21FLRD018	6,973,147	579,059	421	2m at 1.13g/t Au	33	-61/118
i unigrit	21FLRD019	6,973,137	579,077	422	13m at 1.12g/t Au	26	-61/120
Jim's Find	20JFWD040	6,976,050	579,574	417	12m at 0.52g/t Au	20	-54/271
	20JFWD040	6,976,050	579,524	417	10m at 5.65g/t Au	32	-56/270
	20JFWD041 20JFWD044	6,976,050	579,374	417	2m at 7.98g/t Au	40	-55/271

JORC 2012 TABLE 1 – GOLD DIVISION SECTION 1 SAMPLING TECHNIQUES AND DATA (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques Drilling techniques Drill sample recovery	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether arelationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond Drilling A significant portion of the data used in resource calculations has been gathered from diamond core. Multiple sizes have been used historically. This core is geologically logged and subsequently halved for sampling. Grade control holes may be whole-cored to streamline the core handling process if required. Face Sampling At each of the major past and current underground producers, each development face pround is horizontally chip sampled. The sampling intervals are domained by geologica constraints (e.g. rock type, veining and alteration / sulphidation etc.). The majority of exposures within the orebody are sampled. Sludge Drilling Sludge Drilling Sludge drilling at is performed with an underground production drill rig. It is an open hold drilling method using water as the flushing medium, with a 64mm (nominal) hole diameter Sample intervals are ostensibly the length of the drill steel. Holes are drilled at sufficien angles to allow flushing of the hole with water following each interval to preven contamination. Sludge drilling is not used to inform resource models. RC Drilling Drill cuttings are extracted from the RC return via cyclone. The underflow from eacl interval is transferred via bucket to a four tiered rifle splitter, delivering approximatel three kilograms of the recovered material into calico bags for analysis. The residua material is retained on the ground near the hole. Composite samples are obtained from the residue material for initial analysis, with the split samples remaining with th individual piles until required for re-split analysis or eventual disposal. RAB / Aircore Drilling Combined scoops from bucket dumps from cyclone for composite. Split samples taken from individual bucket dumps via scoop. RAB holes are not include

Criteria	JORC Code Explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. 	veining, alteration, mineralisation and orientated structure. Westgold underground drill- holes are logged in detail for geology, veining, alteration, mineralisation and structure
	The total length and percentage of the relevant intersections logged	 Surface core is photographed both wet and dry and underground core is photographed wet. All photos are stored on the companies servers, with the photographs from each hole contained within separate folders.
		Development faces are mapped geologically.
		• RC, RAB and Aircore chips are geologically logged.
		Sludge drilling is logged for lithology, mineralisation and vein percentage.
		Logging is quantitative in nature.
		All holes are logged completely, all faces are mapped completely.

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-halfsampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Blast holes - Sampled via splitter tray per individual drill rods. RAB / AC chips - Combined scoops from bucket dumps from cyclone for composite. Split samples taken from individual bucket dumps via scoop. RC - Three tier riffle splitter (approximately 5kg sample). Samples generally dry. Face Chips - Nominally chipped horizontally across the face from left to right, sub-set via geological features as appropriate. Diamond Drilling - Half-core niche samples, sub-set via geological features asappropriate. Grade control holes may be whole-cored to streamline the core handling process if required. Chips / core chips undergo total preparation. Samples undergo fine pulverisation of the entire sample by an LMS type mill to achieve a 75µ product prior to splitting. QA/QC is currently ensured during the sub-sampling stages process via the use of the systems of an independent NATA / ISO accredited laboratory contractor. A significant portion of the historical informing data has been processed by in-houselaboratories. The sample size is considered appropriate for the grain size of the material being sampled. The un-sampled half of diamond core is retained for check sampling if required. For C chips regular field duplicates are collected and analysed for significant variance to primary results.

Criteria	JORC Code Explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Recent drilling was analysed by fire assay as outlined below; A 40g sample undergoes fire assay lead collection followed by flame atomic

Criteria	JORC Code Explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No independent or alternative verifications are available. Virtual twinned holes have been drilled in several instances across all sites with no significant issues highlighted. Drillhole data is also routinely confirmed by development assay data in the operating environment. Primary data is collected utilising LogChief. The information is imported into a SQL database server and verified. All data used in the calculation of resources and reserves are compiled in databases (underground and open pit) which are overseen and validated by senior geologists. No adjustments have been made to any assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All data is spatially oriented by survey controls via direct pickups by the survey department. Drillholes are all surveyed downhole, deeper holes with a Gyro tool if required, the majority with single / multishot cameras. All drilling and resource estimation is preferentially undertaken in local mine grid at the various sites. Topographic control is generated from a combination of remote sensing methods and ground-based surveys. This methodology is adequate for the resources in question.

Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing is variable dependent upon the individual orebody under consideration. A lengthy history of mining has shown that this approach is appropriate for the Mineral Resource estimation process and to allow for classification of the resources as they stand. Compositing is carried out based upon the modal sample length of each individual domain.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling intersections are nominally designed to be normal to the orebody as far as underground infrastructure constraints / topography allows. Development sampling is nominally undertaken normal to the various orebodies. Where drilling angles are sub optimal the number of samples per drill hole used in the estimation has been limited to reduce any potential bias. It is not considered that drilling orientation has introduced an appreciable sampling bias.
Sample security	The measures taken to ensure sample security.	 For samples assayed at on-site laboratory facilities, samples are delivered to the facility by Company staff. Upon delivery the responsibility for sample security and storage falls to the independent third party operators of these facilities. For samples assayed off-site, samples are delivered to a third party transport service, who in turn relay them to the independent laboratory contractor. Samples are stored securely until they leave site.
Audits or reviews	The results of any audits or reviews of sampling techniques and data	• Site generated resources and reserves and the parent geological data is routinely reviewed by the Westgold Corporate technical team.

SECTION 2 REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Criteria Mineral tenement and land tenure status	 JORC Code Explanation Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Native title interests are recorded against several WGX tenements. The CMGP tenements are held by the Big Bell Gold Operations (BBGO) of which Westgold has 100% ownership.
		 There are no known issues regarding security of tenure. There are no known impediments to continued operation. WGX operates in accordance with all environmental conditions set down as conditions for grant of the leases.

Criteria	JORC Code Explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties	 The CMGP tenements have an exploration and production history in excess of 100 years. The FGP tenements have an exploration and production history in excess of 30 years. Westgold work has generally confirmed the veracity of historic exploration data.
Geology	Deposit type, geological setting and style of mineralisation.	 MGO MGO is located in the Achaean Murchison Province, a granite-greenstone terrane in the northwest of the Yilgarn Craton. Greenstone belts trending north-northeast are separated by granite-gneiss domes, with smaller granite plutons also present within or on the margins of the belts. The Paddy's Flat area is located on the western limb of a regional fold, the Polelle Syncline, within a sequence of mafic to ultramafic volcanics with minor interflow sediments and banded iron-formation. The sequence has also been intruded by felsic porphyry dykes prior to mineralisation silo cated along four sub-parallel trends at Paddy's Flat which can be summarized as containing three dominant mineralisation styles: Sulphide replacement BIF hosted gold. Quartz vein hosted shear-related gold. Quartz-carbonate-sulphide stockwork vein and alteration related gold. The Yaloginda area is a gold-bearing Archaean greenstone belt situated ~15km south of Meekatharra. The deposits in the area are hosted in a strained and metamorphosed volcanic sequence that consists primarily of ultramafic and high-magnesium basalt with minor komatitie, peridotite, gabbro, tholeitic basalt and interflow sediments. The sequence was intruded by a variety of felsic porphyry and intermediate sills and dykes. The Reedy's mining district is located approximately 15 km the south-east to Meekatharra and to the south of Lake Annean. The Reedy gold deposits occur with- in a north-south trending greenstone belt, two to five kilometres wide, composed of volcano-sedimentary sequences and separated multiphase syn- and post-tectonic granitoid complexes. Structurally controlled the gold occur. CGO is located in the Achaean Murchison Province, a granite-greenstone terrane in the northwest of the Yilgarn Craton. Greenstone belts trending north-northeast are separated by granite-gneiss domes, with smaller granite plut

Criteria	JORC Code Explanation	Commentary
		 FGP The Fortnum deposits are Paleoproterozoic shear-hosted gold deposits within the Fortnum Wedge, a localised thrust duplex of Narracoota Formation within the overlying Ravelstone Formation. Both stratigraphic formations comprise part of the Bryah Basin in the Capricorn Orogen, Western Australia. The Horseshoe Cassidy deposits are hosted within the Ravelstone Formation (siltstone and argillite) and Narracoota Formation (highly-altered, moderate to strongly deformed mafic to ultramafic rocks). The main zone of mineralisation is developed within a horizon of highly altered magnesian basalt. Gold mineralisation is associated with strong vein stock works that are confined to the altered mafic. Alteration consists of two types; stockwork proximal silica-carbonate-fuchsite-haematite-pyrite and distal silica-haematite-carbonate+/- chlorite. The Peak Hill district represents remnants of a Proterozoic fold belt comprising highly deformed trough and shelf sediments and mafic / ultramafic volcanics, which are generally moderately metamorphosed (except for the Peak Hill MetamorphicSuite).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	the body of the announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No high-grade cuts are used. Reported results contain no more than two contiguous metres of internal dilution below 0.5g/t.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of ExplorationResults. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Unless indicated to the contrary, all results reported are true width. Given restricted access in the underground environment the majority of drillhole intersections are not normal to the orebody.

Criteria	JORC Code Explanation	Commentary
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Appropriate balance in exploration results reporting is provided.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	continuing mining activities at Westgold Gold Operations.

SECTION 3 ESTIMATION AND REPORTING OF MINERAL RESOURCES

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Mr. Russell visits Westgold Gold Operations regularly.

Criteria	JORC Code Explanation	Commentary
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mining in the Murchison district has occurred since 1800's providing significant confidence in the currently geological interpretation across all projects. No alternative interpretations are currently considered viable. Geological interpretation of the deposit was carried out using a systematic approach to ensure that the resultant estimated Mineral Resource figure was both sufficiently constrained, and representative of the expected sub-surface conditions. In all aspects of resource estimation the factual and interpreted geology was used to guide the development of the interpretation. Geological matrixes were established to assist with interpretation and construction of the estimation domains. The structural regime is the dominant control on geological and grade continuity in the Murchison. Lithological factors such as rheology contrast are secondary controls on grade distribution. Low-grade stockpiles are derived from previous mining of the mineralisation styles outlined above.

Criteria	JORC Code Explanation	Cor	nmentary
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	•	MGO The Paddy's Flat Trend is mineralised a strike length of >3,900m, a lateral extent of up +230m and a depth of over 500m.
		•	Bluebird is mineralised a strike length of >1,800m, a lateral extent of up +50m and a depth of over 500m.
		•	Triton – South Emu is mineralised a strike length of >1,100m, a lateral extent of sev-eral metres and a depth of over 500m.
			CGO
		•	The Big Bell Trend is mineralised a strike length of >3,900m, a lateral extent of up +50m and a depth of over 1,500m.
		•	Great Fingall is mineralised a strike length of >500m, a lateral extent of >600m and a depth of over 800m.
		•	Black Swan South is mineralised a strike length of >1,700m, a lateral extent of up +75m and a depth of over 300m. FGP
		•	The Yarlarweelor mineral resource extends over 1,400m in strike length, 570m in lateral extent and 190m in depth.
		•	The Tom's and Sam's mineral resource extends over 650m in strike length, 400m in lateral extent and 130m in depth.
		•	The Eldorado mineral resource extends over 240m in strike length, 100m in lateral extent and 100m in depth.
		•	Low-grade stockpiles are of various dimensions.

Criteria	JORC Code Explanation	Со	nmentary
		•	All modelling and estimation work undertaken by Westgold is carried out in three dimensions via Surpac Vision.
		•	After validating the drillhole data to be used in the estimation, interpretation of the orebody is undertaken in sectional and / or plan view to create the outline strings which form the basis of the three dimensional orebody wireframe. Wireframing is then carried out using a combination of automated stitching algorithms and manual triangulation to create an accurate three dimensional representation of the sub-surface mineralised body.
		•	Drillhole intersections within the mineralised body are defined, these intersections are then used to flag the appropriate sections of the drillhole database tables for compositing purposes. Drillholes are subsequently composited to allow for grade estimation. In all aspects of resource estimation the factual and interpreted geology was used to guide the development of the interpretation.
		•	Once the sample data has been composited, a statistical analysis is undertaken to assist with determining estimation search parameters, top-cuts etc. Variographic analysis of individual domains is undertaken to assist with determining appropriate search parameters. Which are then incorporated with observed geological and geometrical features to determine the most appropriate search parameters.
		•	An empty block model is then created for the area of interest. This model contains attributes set at background values for the various elements of interest as well as density, and various estimation parameters that are subsequently used to assist in resource categorisation. The block sizes used in the model will vary depending on orebody geometry, minimum mining units, estimation parameters and levels of informing data available.
		•	Grade estimation is then undertaken, with ordinary kriging estimation method is considered as standard, although in some circumstances where sample populations are small, or domains are unable to be accurately defined, inverse distance weighting estimation techniques will be used. Both by-product and deleterious elements are estimated at the time of primary grade estimation if required. It is assumed that by- products correlate well with gold. There are no assumptions made about therecovery of by-products.
		•	The resource is then depleted for mining voids and subsequently classified in line with JORC guidelines utilising a combination of various estimation derived parameters and geological / mining knowledge.
		•	This approach has proven to be applicable to Westgold's gold assets.
		•	Estimation results are routinely validated against primary input data, previous estimates and mining output.
		•	Good reconciliation between mine claimed figures and milled figures was routinely achieved during past production history.

Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnage estimates are dry tonnes.
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	• The cut off grades used for the reporting of the Mineral Resources have been selected based on the style of mineralisation, depth from surface of the mineralisation and the most probable extraction technique.
Mining factors orassumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 Variable by deposit. No mining dilution or ore loss has been modelled in the resource model or applied to the reported Mineral Resource.
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Not considered for Mineral Resource. Applied during the Reserve generation process.

Criteria	JORC Code Explanation	Commentary
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	conditions for grant of the respective leases.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 oxidation rather than mineralisation dependent. A large suite of bulk density determinations have been carried out across the project areas. The bulk densities were separated into different weathering domains and lithological domains A significant past mining history has validated the assumptions made surrounding bulk

Criteria	JORC Code Explanation	Commentary
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	estimation derived parameters, input data and geological / mining knowledge.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 Resource estimates are peer reviewed by the Corporate technical team. No external reviews have been undertaken.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 both a global and local scale. A continuing history of mining with good reconciliation of mine claimed to mill recovered provides confidence in the accuracy of the estimates.

SECTION 4 ESTIMATION AND REPORTING OF ORE RESERVES

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral Resource estimate for conversion to Ore Reserves	 Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve. Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves. 	 At all Operations the Ore Reserve is based on the corresponding reported Mineral Resource estimate. Mineral Resources reported are inclusive of those Mineral Resources modified to produce the Ore Reserve estimate. At all projects, all Mineral Resources that have been converted to Ore Reserve are classified as either an Indicated or Measured material.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Mr. Anthony Buckingham has been an employee of WGX (and its subsidiaries) for the past 9 years and has over 15 years' experience specifically in the Western Australian mining industry. Mr. Buckingham visits the mine sites on a regular basis and is one of the primary engineers involved in mine planning, site infrastructure and project management.

Criteria JORC Code Explanation	Commentary
Study status • The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. • The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered	 Processing at the Murchison operations has occurred continuously since 2015, with previous production occurring throughout 1800's, 1900's and 2000's. Various mineralisation styles and host domains have been mined since discovery. Mining during this time has ranged from open pit cut backs, insitu surface excavations to extensional underground developments. Budget level, 24 month projected, forecasts are completed on a biannual basis, validating cost and physical inventory assumptions and modelling. These updated parameters are subsequently used for the basis of the Ore Reserve modification and financial factors. Following exploration and infill drilling activity. Resource models are updated on both the estimation of grade and classification. These updated Resource Models then form the foundation for Ore Reserve calculation.

Criteria	JORC Code Explanation	Commentary
Cut-off parameters	• The basis of the cut-off grade(s) or quality parameters applied.	• Underground Mines - Cut off grades are used to determine the economic viability of the convertible Resource. COG for underground mines incorporate OPEX development and production costs, grade control, haulage, milling, administration, along with state and private royalty conditions, Where an individual mine has different mining methods and or various orebody style, COG calculations are determined for each division. These cuts are applied to production shapes (stopes) as well as high grade development. Additionally an incremental COG is applied to low grade development, whereby access to a high grade area is required.
		• On the basis of above process, COG's for the underground mines range from 1.8g/t (sub level caving), 2.4g/t for bulk style open stopes, 2.8g/t for narrow vein style / discrete mechanised production fronts and 5.2g/t for man entry stoping.
		• Open Pit Mines - The pit rim cut-off grade (COG) was determined as part of the Ore Reserve estimation. The pit rim COG accounts for grade control, haulage, milling, administration, along with state and private royalty conditions. This cost profile is equated against the value of the mining block in terms of recovered metal and the expected selling price. The COG is then used to determine whether or not a mining block should be delivered to the treatment plant for processing, stockpiled as low- grade or taken to the waste dump.
		• On the basis of above process, COG's for the open pit mines range from 0.8g/t (whereby the Mill is local to Resources and Mill recoveries are greater than 90%) to 1.4g/t (regional pits with low Mill recoveries).
		• Stockpile COG – A marginal grade was determined for each stockpile inventory to ensure it was economically viable. The COG accounts for haulage, milling, administration, along with state and private royalty conditions. Each pile honoured its Mill recovery percentage.

Criteria	JORC Code Explanation	Commentary
Mining factors or assumptions	 The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design). The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc.) grade control and pre-production drilling. The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate). The mining propriate). The mining propriate). The mining propriate). The mining recovery factors used. Any minimum mining widths used. The maner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion. The infrastructure requirements of the selected mining methods. 	 All Ore Reserve inventories are based upon detailed 3 dimensional designs to ensure practical mining conditions are met. Additionally all Ore Reserve inventories are above the mine specific CO(s) as well as containing only Measured and Indicated material. Depending upon the mining method – modifying factors are used to address hydrological, geotechnical, minimum width and blasting conditions. Open Pit Methodology Following consideration of the various modifying factors the following rules were applied to the reserve estimation process for the conversion of measured and indicated resource to reserve for suitable valuation. The mining shape in the reserve estimation is generated by a wireframe (geology interpretation of the ore zone) which overlays the block model. Where the wire frame boundary (effectively the mining shape). It is reasonable to assume that the mining method can selectively mine to the wire frame boundary with the additional dilution provision stated below. Ore Reserves are based on Pit shape designs – with appropriate modifications to the original Whittle Shell outlines to ensure compliance with practical mining parameters. Geotechnical parameters aligned to the Open Pit Ore Reserves are either based on observed existing pit shape specifics or domain specific expectations / assumptions. Various geotechnical reports and retrospective reconciliations were considered in the design parameters. A majority of the open pits have a final design wall angle of 39-46 degrees, which is seen as conservative. Dilution of the ore through the mining process has been accounted for within the Ore Reserve quoted inventory. Various dilution ratios are used to represent the style of mineralization. Where continuous, consistert ore bunded to model correctly the inherent variability of extracting discrete sections of the pit floor: oxide 15%, transitional 17% and fresh 19%. In circumstances where the orebody is less homogenous

Criteria	JORC Code Explanation	Cor	nmentary
			Underground Methodology
		•	All Underground Reserves are based on 3D design strings and polygon derived stope shapes following the Measured and Indicated Resource (in areas above the COG). A complete mine schedule is then derived from this design to create a LOM plan and financial analysis.
		•	Mining methodology is based on previous mining experience. All mining systems within the Reserve statement are standardized, mechanized Western Australian methods.
		•	In large disseminated orebodies sub level caving, sub level open stoping or single level bench stoping production methodologies are used.
		•	In narrow vein laminated quartz hosted domains a conservative narrow bench style mining method is used.
		•	In narrow flat dipping deposits a Flat Long Hole process is adopted (with fillets in the footwall for rill angle) and or jumbo stoping.
		•	Stope shape parameters have been based on historical data (where possible) or expected stable hydraulic radius dimensions.
		•	Stope inventories have been determined by cutting the geological wireframe at above the area specific COG and applying mining dilution and ore loss factors. The ore loss ratio accounts for pillar locations between the stopes (not operational ore loss) whilst dilution allows for conversion of the geological wireframe into a minable shape (Planned dilution) as well as hangingwall relaxation and blasting overbreak (unplanned dilution).
		•	Depending upon the style of mineralisation, sub level interval, blasthole diameters used and if secondary support is installed, total dilution ranges from 15 to 35%.
		•	Minimum mining widths have been applied in the various mining methods. The only production style relevant to this constraint is 'narrow stoping' – where the minimum width is set at 1.5m in a 17.0m sub level interval.
		•	Mining operational recovery for the underground mines is set at 100% due to the use of remote loading units as well as paste filling activities. Mining recovery is not inclusive of pillar loss – insitu mineralised material between adjacent stope panels.
		•	Stope shape dimensions vary between the various methods. Default hydraulic radii are applied to each method, and are derived either from historical production or geotechnical reports / recommendations. Where no data or exposure is available conservative HR values are used based on the contact domain type.
		•	Mining sequence is included in the mine scheduling process for determining the economic evaluation and takes into account available operating time and mining equipment size and performance.

Criteria	JORC Code Explanation	Commentary
Metallurgical factors or assumptions	 The metallurgical process proposed and the appropriateness of that process to the style of mineralisation. Whether the metallurgical process is well-tested technology or novel in nature. The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied. Any assumptions or allowances made for deleterious elements. The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole. For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications? 	

Criteria	JORC Code Explanation	Сот	mmentary
		•	MGO
		•	MGO has an existing conventional CIL processing plant – which has been operational in various periods since the late 1980's.
		•	The plant has a nameplate capacity of 1.6Mtpa though this can be varied between 1.2- 1.8Mtpa pending rosters and material type.
		•	Gold extraction is achieved using single stage crushing, SAG & ball milling with gravity concentration and Carbon in Leach.
		•	A long history of processing through the existing facility demonstrates the appropriateness of the process to the styles of mineralisation considered.
		•	No deleterious elements are considered, as a long history of processing has shown this to be not a material concern.
		•	For the 2018 Reserve, Plant recoveries of 85-92% have been utilised.
		•	FGP
		•	FGP has an existing conventional CIL processing plant – which has been operational in various periods since the late 1980's. The plant has a nameplate capacity of 1.0Mtpa though this can be varied between 0.8-1.2Mtpa pending rosters and material type.
		•	An extensive database of historical CIL recoveries as well as detailed metallurgical test work is available for the various deposits and these have been incorporated into the COG analysis and financial models.
		•	For the 2018 Reserve, Plant recoveries of 93-95% have been utilised.
Environmental	 The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, 		MGO
	status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported.	•	MGO operates under and in compliance with a number of operating environmental plans, which cover its environmental impacts and outputs as well as reporting guidelines / frequencies.
		•	Various Reserve inventories do not have current DMP / DWER licenses – though there are no abnormal conditions / factors associated with these assets which the competent person sees as potentially threatening to the particular project.
		•	The operation is frequently inspected by the regulatory authorities of DMP and DWER with continual feedback on environmental best practice and reporting results.
		•	Flood Management, Inclement Weather and Traffic Management Plans existing for the operation to minimise the risks of environmental impacts.
		•	Standard Operating Procedures for the transfer of hazardous materials and restocking of Dangerous Goods existing on site to mitigate the risk of these materials entering the environment.

Criteria	JORC Code Explanation	Commentary
		 CGO CGO operates under and in compliance with a number of operating environmental plans, which cover its environmental impacts and outputs as well as reporting guidelines / frequencies.
		 Various Reserve inventories do not have current DMP / DWER licenses – though there are no abnormal conditions / factors associated with these assets which the competent person sees as potentially threatening to the particular project.
		• The operation is frequently inspected by the regulatory authorities of DMP and DWER with continual feedback on environmental best practice and reporting results.
		 Flood Management, Inclement Weather and Traffic Management Plans existing for the operation to minimise the risks of environmental impacts.
		 Standard Operating Procedures for the transfer of hazardous materials and restocking of Dangerous Goods existing on site to mitigate the risk of these materials entering the environment. FGP
		 FGP operates under and in compliance with a number of operating environmental plans, which cover its environmental impacts and outputs as well as reporting guidelines / frequencies.
		• Various Reserve inventories do not have current DMP / DWER licenses – though there are no abnormal conditions / factors associated with these assets which the competent person sees as potentially threatening to the particular project.
		• The operation is frequently inspected by the regulatory authorities of DMP and DWER with continual feedback on environmental best practice and reporting results.
		 Flood Management, Inclement Weather and Traffic Management Plans existing for the operation to minimise the risks of environmental impacts.
		• Standard Operating Procedures for the transfer of hazardous materials and restocking of Dangerous Goods existing on site to mitigate the risk of these materials entering the environment.

Criteria JORC Code Explanation	Commentary
Criteria JORC Code Explanation Infrastructure The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodites), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed. Infrastructure Provided, or accessed. Pr	MGO MGO MGO has an operating plant and tailings storage facility, along with extensive mechanical and electrical maintenance facilities. The site also includes existing administration buildings as well as a 300 man accommodation camp facility. Power is provided by onsite diesel generation, with potable water sourced from nearby bore water (post treatment). Communications and roadways are existing. Airstrip facilities are available at the local Meekatharra airstrip (30km). CGO CGO has an operating plant and tailings storage facility, along with extensive mechanical and electrical maintenance facilities. The site also includes existing administration buildings as well as a 250 man accommodation camp facility. Power is provided by onsite diesel generation, with potable water sourced from nearby bore water (post treatment). Communications and roadways are existing. Airstrip facilities are available at the local Cue airstrip (20km). FGM FGM has an operating plant and tailings storage facility, along with extensive mechanical and electrical maintenance facilities. The site also includes existing administration buildings as well as a 200 man accommodation camp facility. Power is provided by onsite diesel generation, with potable water sourced from nearby bore water (post treatment). Communications and roadways are existing. Airstrip facilities are available on site – though a majority of

Criteria	JORC Code Explanation	Commentary
Costs	 The derivation of, or assumptions made, regarding projected capital costs in the study. The methodology used to estimate operating costs. Allowances made for the content of deleterious elements. The source of exchange rates used in the study. Derivation of transportation charges. The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. The allowances made for royalties payable, both Government and private. 	 MGO Processing costs are based on actual cost profiles with variations existing between the various oxide states. Site G&A and portioned corporate overheads are included within the analysis (based upon previous Budget years actuals). Mining costs are derived primarily from the current contractor cost profiles in both the open pit and underground environment. For Open Pits where no current mining cost profiles are available for a forecasted Reserve, a historically 'validated' pit cost matrix is used – with variation allowances for density, fuel price and gear size. For the underground environment, if not site specific mining rates are available, an appropriately selected operating mine is used for the basis of cost profiling. Geology and Grade Control costs are incorporated in the overall cost profile and are based upon previously reconciled Budgetary forecasts. Haulage costs used are either contractual rates or if in the case where a mine has none, a generic cost per tkm unit rate is utilised. Both state government and private royalties are incorporated into costings as appropriate.

Criteria	JORC Code Explanation	Commentary
Criteria	JORC Code Explanation	 CGO Processing costs are based on actual cost profiles with variations existing between the various oxide states. Site G&A and portioned corporate overheads are included within the analysis (based upon previous Budget years actuals). Mining costs are derived primarily from the current contractor cost profiles in both the open pit and underground environment. For Open Pits where no current mining cost profiles are available for a forecasted Reserve, a historically 'validated' pit cost matrix is used – with variation allowances for density, fuel price and gear size. For the underground environment, if not site specific mining rates are available, an appropriately selected operating mine is used for the basis of cost profile and are based upon previously reconciled Budgetary forecasts. Haulage costs used are either contractual rates or if in the case where a mine has none, a generic cost per tkm unit rate is utilised. Both state government and private royalties are incorporated into costings as appropriate. FGP Processing costs are based on actual cost profiles with variations existing between the various oxide states. Site G&A and portioned corporate overheads are included within the analysis (based upon previous Budget years actuals). Mining costs are derived primarily from the current contractor cost profiles in both the open pit and underground environment.
		Reserve, a historically 'validated' pit cost matrix is used – with variation allowances for
		 Haulage costs used are either contractual rates or if in the case where a mine has none, a generic cost per tkm unit rate is utilised. Both state government and private royalties are incorporated into costings as appropriate.
Revenue factors	 The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products. 	 Mine Revenue, COG's, open pit optimisation and royalty costs are based on the long term forecast of A\$1,725/oz. No allowance is made for silver by-products.

Criteria	JORC Code Explanation	Commentary
Market assessment	 The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. A customer and competitor analysis along with the identification of likely market windows for the product. Price and volume forecasts and the basis for these forecasts. For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract. 	 Detailed economic studies of the gold market and future price estimates are considered by Westgold and applied in the estimation of revenue, cut-off grade analysis and future mine planning decisions. There remains strong demand and no apparent risk to the long term demand for the gold.
Economic	 The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs. 	 Each separate mine (open pit, underground or stockpile) has been assessed on a standard operating cash generating model. Capital costs have been included thereafter to determine an economic outcome. Subsequently each Operating centre (MGO, CGO and FGP) has had a Discounted Cash Flow model constructed to further demonstrate the Reserve has a positive economic outcome. A discount rate of 8% is allied in DCF modelling. No escalation of costs and gold price is included. Sensitivity analysis of key financial and physical parameters is applied to future development projects.
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	 MGO MGO is fully permitted and a major contributor to the local and regional economy. It has no external pressures that impact its operation or which could potentially jeopardise its continuous operation. As new open pits or underground operations develop the site will require separate environmental approvals from the different regulating bodies. Where required, the operation has a Native Title and Pastoral Agreement.

Criteria	JORC Code Explanation	Commentary
		 CGO CGO is fully permitted and a major contributor to the local and regional economy. It has no external pressures that impact its operation or which could potentially jeopardise its continuous operation. As new open pits or underground operations develop the site will require separate environmental approvals from the different regulating bodies. Where required, the operation has a Native Title and Pastoral Agreement. FGP FGP is fully permitted and a major contributor to the local and regional economy. It has no external pressures that impact its operation or which could potentially jeopardise its continuous operation. As new open pits or underground operations develop the site will require separate environmental approvals from the different regulating bodies. Where required, the operation has a Native Title and Pastoral Agreement.
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent. 	 MGO is an active mining project. CGO is an active mining project. FGP is an active mining project.
Classification	 The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any). 	 The basis for classification of the Resource into different categories is made in accordance with the recommendations of the JORC Code 2012. Measured Resources have a high level of confidence and are generally defined in three dimensions with accurately defined or normally mineralised developed exposure. Indicated resources have a slightly lower level of confidence but contain substantial drilling and are in most instances capitally developed or well defined from a mining perspective. Inferred resources always contain significant geological evidence of existence and are drilled, but not to the same density. There is no classification of any resource that isn't drilled or defined by substantial physical sampling works. Some Measured Resources have been classified as Proven and some are defined as Probable Reserves based on internal judgement of the mining, geotechnical, processing and or cost profile estimates. No Indicated Resource material has been converted into Proven Reserve. The resultant Reserve classification appropriately reflects the view of the Competent Person.

Criteria	JORC Code Explanation	Commentary
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	 Reserves inventories and the use of appropriate modifying factors are reviewed internally on an annual basis. Additionally, mine design and cost profiles are regularly reviewed by WGX operational quarterly reviews. Financial auditing processes, Dataroom reviews for asset sales / purchases and stockbroker analysis regularly 'truth test' the assumptions made on Reserve designs and assumptions.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage. It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 estimate of contained insitu gold (Resource), it is the competent person's view that the consolidated Reserve inventory is highly achievable in entirety. Given the entire Ore Reserves inventory is within existing operations, with Budgetary style cost models and current contractual mining / processing consumable rates, coupled with an extensive historical knowledge / dataset of the Resources, it is the competent person's view that the significant mining modifying factors (COG's, geotechnical parameters and dilution ratio's) applied are achievable and or within the limits of 10% sensitivity analysis.