

ASX Announcement 29 April 2020

March 2020 - Quarterly Activities Report

COVID-19 Response and Impact

- The Group has implemented substantial measures to ensure the safety of employees, contractors, suppliers and the community in response to the COVID-19 pandemic.
- To date there have been no cases of COVID-19 within the workforce and the Company remains vigilant.
- Apart from travel restrictions presenting some difficulties for our interstate and international
 employees, operations have continued as normal during the Quarter. Plans are in place to
 address any supply chain issues that may arise in the future, ensuring that Group operations
 remain undisrupted.

Production

- Group gold output of **55,234oz** was achieved for the quarter at Cash Costs (C1) of A\$1,275/oz (~US\$* 803/oz) and All In Sustaining Cost (AISC) of A\$1,525/oz (~US\$* 961/oz).
- Group gold sales of 53,265oz at an average price of A\$2,087 per ounce deriving revenue of A\$111M (~ US\$*70M).
- Mine Operating Cash Flow of A\$28M (~US\$*18M) generated.
- Re-investment resulted in a Net Mine Cash Outflow of **A\$7 million** (~US\$*4 million) with capital spent on the start-up of two new underground mines (Bluebird and Triton), preproduction and growth capital at Big Bell, pre-strips in open pits and exploration.
- The first bulk stope within the sub-level cave at Big Bell mine was fired late in the quarter with the first ore making it to the mill in the last week of the quarter.

Other

- At MGO, exceptional exploration results were received from the Vivian's area at Paddy's Flat, including:
 - o 2m at 32.74g/t Au from 85m (19VIDD055A);
 - 8.09m at 49.61g/t Au from 140m (19VIDD056);
 - o 0.3m at 1,590.70g/t Au from 45m (19VIDD057A) and
 - 1m at 184.40g/t Au from 105m (19VIDD058).

Enquiries:

Peter Cook (Exec. Chairman) peter.cook @westgold.com.au

Rod Corps (Manager – Investor Relations) rod.corps@westgold.com.au

- Westgold repaid a further A\$6 million equivalent (3,750oz) in gold pre-pay debt reducing the balance to 3,750oz.
- Westgold closed with net cash, bullion and liquid assets of **A\$66 million** of which A\$26 million is in listed public company shares in third parties.
- The gold hedge position at end of quarter was 230,000oz at an average of A\$2,057/oz.

Note: An exchange rate average of AUD\$ 0.63 is applied to USD\$ conversions.

Enquiries:

Peter Cook Steve Norregaard Rod Corps

Executive Chairman Executive Director Investor Relations

peter.cook@westgold.com.au steve.norregaard@minterra.com.au rod.corps@westgold.com.au

COVID-19 Response & Impact

Westgold reacted swiftly in response to the COVID19 pandemic by implementing a number of measures to ensure the stability of its operations and the safety of its employees, contractors, site visitors and their families to ensure the well-being of the communities within which we operate.

To date there have been no cases of COVID-19 within the workforce and the Company remains vigilant and proactive, rolling out a program of free influenza vaccines for normal seasonal influenza to all its workers and contractors.

To date there has been no significant disruptions to operations, critical operating supplies or product logistics and Westgold has plans in place to address any disruptions should they arise. Travel restrictions have impacted some of our workforce numbers and on an overall basis we estimate we are operating at approximately 92-95% capacity.

Key specific measures which have been implemented to date include:

- Roster amendments, additional flights and reduced passenger numbers to decrease airport personnel traffic and comply with social distancing guidelines during FIFO operations;
- Compulsory temperature testing at airport terminals and onsite;
- Isolation requirements for travel by international and interstate workforce;
- Commuting allowances for those electing to drive to site;
- Passenger numbers restricted when traveling in vehicles to meet social distancing guidelines and vehicle sanitization packs added to light and heavy vehicles;
- Electronic handovers at roster and shift changes;
- Elimination of self-serve meals, restrictions to limit interaction when dining and the introduction of pre-packed lunches;
- Increased availability of hand wash stations and hand sanitizer units;
- Selected roles working remotely to decrease personnel numbers onsite;
- Identification, risk assessments and management process of "high touch" areas;
- Disease management and disaster protocols implemented including a COVID-19 "tracing" exercise;
- Mock drills for Covid related emergencies and management training;
- Implemented free seasonal influenza shots for all workers and contractors;
- Minimised contact with local communities by restricting workforce travel and integration.

Occupational Health Safety & Environment

Group safety statistics for the quarter are summarised below:

Site	LTI	LTIFR	TRIFR
Cue Gold Operations	0	4.02	114.48
Meekatharra Gold Operations	0	4.69	101.53
Fortnum Gold Operations	1	4.10	69.66
Minterra (Previously ACM)	4	9.14	166.02

There were no environmental breaches recorded against the Company during the quarter.

Group Operational Performance

Physical and financial outcomes for the Westgold Group ("Group") operations during the quarter are summarised in the table below.

Table 1: Group Operational Performance – March Quarter 2020

		MGO Mar Qtr 2020	CGO Mar Qtr 2020	FGO Mar Qtr 2020	Group Total Mar Qtr 2020
Physical Summary	Units				
ROM - UG Ore Mined	t	246,592	117,690	107,995	472,276
UG Grade Mined (Inc. LG)	g/t	3.47	3.15	2.76	3.23
OP Ore Mined	t	61,762	99,836	0	161,598
OP Grade Mined	g/t	1.84	1.37	0.00	1.55
All Ores Processed	t	389,781	314,555	209,989	914,325
Head Grade	g/t	2.57	1.80	1.97	2.17
Recovery	%	80.84	90.27	95.85	87.53
Gold Produced	oz	26,066	16,444	12,724	55,234
Gold Sold	oz	22,740	15,379	15,146	53,265
Achieved Gold Price	\$/oz	2,064	2,044	2,166	2,087
Cost Summary	Units				
Mining#	A\$/oz	834	759	661	772
Processing	A\$/oz	364	543	439	435
Admin	A\$/oz	53	77	73	65
Stockpile adjustments	A\$/oz	(44)	(34)	148	3
C1 Cash Cost (produced)	A\$/oz	1,208	1,345	1,321	1,275
Royalties	A\$/oz	123	63	86	96
Corp.Costs & Rehabilitation	A\$/oz	10	15	23	14
Sustaining Capital	A\$/oz	160	78	179	140
All-in Sustaining Costs	A\$/oz	1,500	1,501	1,609	1,526
Growth and Start-up Capital	A\$/oz	439	1,280	241	644
Exploration	A\$/oz	41	48	35	42
Mine Operating Cash Flow	A\$ m	6.94	6.44	14.51	27.89
Net Mine Cash Flow	A\$ m	(4.50)	(14.61)	11.45	(7.67)

Notes: Mine Operating Cash Flow = Total revenue less AISC plus corporate costs & ore inventory adjustments.

Net Mine Cash Flow = Mine operating cash flow less growth capital.

Year to Date (YTD) physical and financial outcomes of the group operations are summarised in the table below.

Table 2: Group YTD Physical and Financial Performance

		MGO YTD	CGO YTD	FGO YTD	Group Total YTD
Physical Summary	Units				
ROM - UG Ore Mined	t	657,426	312,123	376,110	1,345,659
UG Grade Mined (Inc. LG)	g/t	3.68	3.12	3.23	3.42
OP Ore Mined	t	342,147	487,185	0	829,332
OP Grade Mined	g/t	1.56	1.35	0.00	1.44
All Ores Processed	t	1,108,260	948,429	646,975	2,703,664
Head Grade	g/t	2.64	1.87	2.31	2.29
Recovery	%	82.31	91.09	95.42	88.53
Gold Produced	OZ	77,457	51,951	45,952	175,361
Gold Sold	OZ	72,777	50,490	45,695	168,962
Achieved Gold Price	\$/oz	1,980	2,001	2,058	2,007
Cost Summary	Units				
Mining#	A\$/oz	775	1,005	514	775
Processing	A\$/oz	348	500	359	396
Admin	A\$/oz	57	72	60	62
Stockpile adjustments	A\$/oz	(31)	(2)	115	16
C1 Cash Cost (produced)	A\$/oz	1,149	1,575	1,048	1,249
Royalties	A\$/oz	114	54	64	83
Corp.Costs & Rehabilitation	A\$/oz	10	15	22	15
Sustaining Capital	A\$/oz	197	106	113	148
All-in Sustaining Costs	A\$/oz	1,470	1,750	1,247	1,495
Growth and Start-up Capital	A\$/oz	398	907	162	487
Exploration	A\$/oz	61	71	58	63
Mine Operating Cash Flow	A\$ m	28.57	10,74	43.05	82.36
Net Mine Cash Flow	A\$ m	(2.27)	(36.36)	35.60	(3.03)

Notes:

Year refers to Westgold Financial Year ending 30 June, 2020.

The year to date figures include the minor impact of any half year audit adjustments.

Mine Operating Cash Flow = Total revenue less AISC plus corporate costs & ore inventory adjustments.

Net Mine Cash Flow = Mine operating cash flow less growth capital.

Fortnum Gold Operations (FGO)

FGO performed strongly during the quarter despite part of the Starlight mine being in the down-cycle of the revised bulk mining methodology currently in operation. A consequence of this methodology is high variability in grade distribution within bulk mining areas (i.e. 'feast or famine').

Mine production from Starlight was 30% lower with mine grade 24% lower after seasonal rains caused flooding of some work areas during the quarter. As Starlight is the only operating mine at Fortnum its underground ore is blended with low grade surface stocks to maintain plant feed, resulting in lower milled grade ore. Improved results are anticipated next quarter as Starlight bulk stoping moves towards higher grade zones.

Despite the lower output, the overall performance at Fortnum remains outstanding, thanks to efficiency in mining and reduced operating costs. Consequently, while underground mine grade was 2.76g/t, mine unit costs were only A\$661/oz. Year to date head grade for the underground mine is 3.23g/t and mine operating costs are averaging A\$514/oz, which is exceptional for this style of mining and reflects the benefits of the Westgold owner operator model.

For the quarter, FGO gold output was 12,724oz reflecting the "famine" period of the mining cycle compared to the previous "feast" cycle which saw a record of 19,465oz.

Cash operating costs (C1) of A\$1,321/oz were higher due to the lower output with an AISC of A\$1,609/oz however FGO's performance is better reflected in the 12-month rolling average which takes into account the 'feast or famine' nature of the bulk stoping. This stands at 60,175oz at Cash Costs (C1) of A\$1,066/oz (~US\$ 672/oz) and AISC of A\$1,255/oz (~US\$791/oz).

Westgold has increased development rates into other ore zones. As these progress the Group expects to see reduced variation in the month-to-month and quarter-to-quarter grade results when compared to those achieved by the partial bulk extraction in the Starlight lodes.

Despite a less productive quarter on a comparative basis, the FGO still generated a mine operating cash flow of A\$14.51 million and a net mine cash flow of A\$11.45 million

Quarterly and rolling 12-month financial performance is illustrated below.

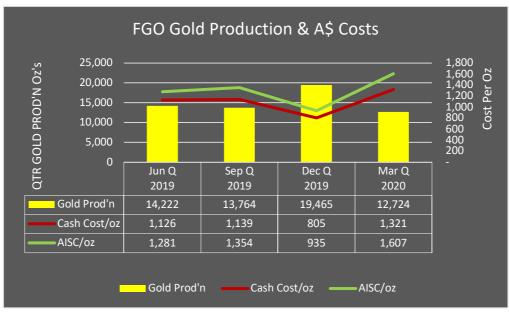


Figure 1: Quarterly and Rolling 12-month FGO Gold Production and Costs

Exploration activity at Starlight was hampered by the flooding events removing access to some drill positions. Whilst drilling work has been reduced in volume, steady progress has been made with ongoing definition activities to support mining. In addition, preparation is underway for the addition of another underground rig into the mine later in calendar 2020, once suitable exploration drill sites are established.

Better intercepts returned this quarter include:

- 15.1m at 2.58g/t Au from 42m (WGU0316A at Starlight)
- 2.25m at 15.77g/t Au from 126m (WGU0321 at Nightfall/Galaxy) and
- 2.4m at 17.92g/t Au from 55m and 3.1m at 21.35g/t Au from 132m (WGU0358 at Twilight.)

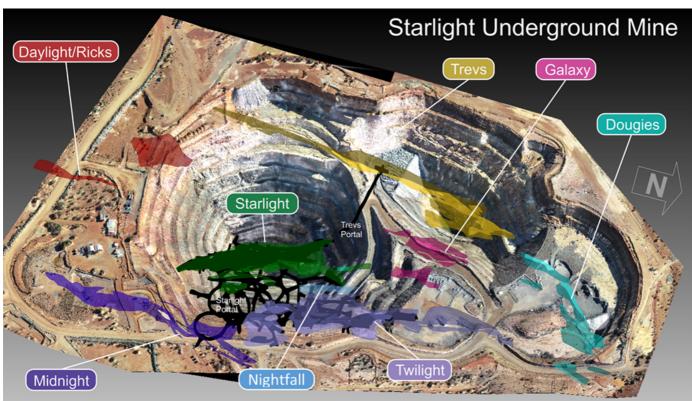


Figure 2: Image showing Lodes within the Starlight ore system

Meekatharra Gold Operations (MGO)

MGO performed solidly during the quarter with a modest QoQ increase in gold output to 26,066oz primarily as a result of increased plant throughput. Cash operating Costs (C1) remained consistent with the preceding quarter at A\$1,208 per ounce and AISC at A\$1,500/oz.

The operations generated steady operating cashflow of approximately A\$7m for the quarter, in line with the last few quarters.

As part of output expansion plans, capital was re-invested in the two new underground mines (Bluebird and Triton North) and the pre-strip of the Five Mile Well open pit. The Bluebird mine should commence producing ore from development in the ensuing quarter, whilst the Five Mile Well open pit, should commence to produce ore in Q1 of the 2020/2021FY.

Underground mining output increased marginally, however grade was slightly lower due to timing differences with bulk low grade stopes in the Paddy's Flat Mine. The South Emu mine performed strongly with tonnes and grade as planned.

Process plant throughput continued to improve averaging approximately 185 tph for the quarter and was in line with expected capacity. A higher throughput resulted in a higher proportion of lower grade stock in the blend and hence average process grade was slightly lower but metallurgical recoveries were improved.

Quarterly and rolling 12-month annual performance is illustrated in Figure 3 below:

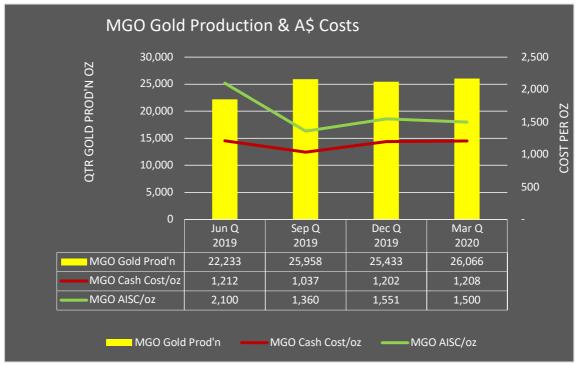


Figure 3: Quarterly and Rolling 12-month MGO Gold Production and Costs

Figure 3 depicts steady gold output and costs from MGO. Output will creep higher over the ensuing years as higher volumes of underground ore begins to positively impact total output. The rolling 12-months gold output for MGO is 99,690oz at Cash Costs (C1) of A\$1,163/oz (~US\$ 733/oz) and AISC of A\$1,610/oz (~US\$1,014/oz).

On the exploration front, exceptional results were returned from deeper work within the Paddy's Flat mine. This work has focussed on the Vivian's area of the mine and includes another of the flat thrust structures (Dart).

Amongst the better results, the following exceptional intercepts below were returned:

- 2m at 32.74g/t Au from 85m (9VIDD055A)
- 8.09m at 49.61g/t Au from 140m (19VIDD056)
- 0.3m at 1,590.70g/t Au from 45m (19VIDD057A) and;
- 1m at 184.40g/t Au from 105m (19VIDD058).

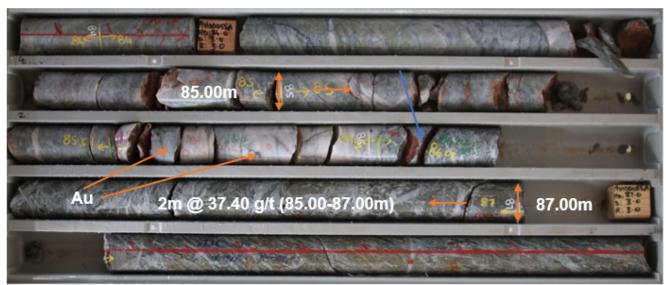


Figure 4: Dart Thrust Footwall Intercept in 19VIDD055A (2m at 37.40 g/t, 85.00-87.00m), positioned on a faulted porphyry – alteration contact, consisting of minor to moderate QCS (Quartz Carbonate Sericite) and minor QCF (Quartz Carbonate Fuchsite).

Additional progress at Paddy's Flat includes the return of all outstanding assay results from the resource drill-out of the recently discovered Hendrix lode. All holes recorded significant intercepts in Hendrix, whilst two of the holes returned simultaneous significant Mudlode style intercepts.

Further again, exploration drilling into the Prohibition Lodes proved the continuation of the host BIF sequence down-plunge beyond the cross-cutting Proterozoic Dyke Pleasingly all six holes intersected the host unit (although drilled sub-parallel to the brittle fractures that define mineralisation), defining the boundaries of the prospective horizon. Operations will now shift its focus to defining the resource within this envelope.

300Z

BIF

100Z

9m of BiF - Mod to well min
209800001

18m of BiF - 1m strong min
209800002

-100Z

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

209800003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

20080003

2008003

2008003

2008003

2008003

2008003

2008003

2008

Figure 5: Prohibition geological framework drilling program schematic long-section. Showing existing Prohibition open pit and underground workings, Proterozoic dolerite dyke (green), previously known extents of host BIF sequence (brown) and intersection points of framework drilling program holes (yellow stars).

Underground resource definition and extensional diamond drilling continued at South Emu providing excellent intercepts such as 15.26m at 3.22g/t Au from 45m in 19SEDD056, 7m at 7.68g/t Au from 65m in 19SEDD063 and 12.61m at 4.10g/t Au from 88m in 20SEDD024.

The exploration focus has now turned towards the Triton North area and the testing of ahead of the approaching Triton Decline. This work will occur in parallel with ongoing exploration and resource definition activities at South Emu.

Westgold has continued grassroots exploration activities in the Meekatharra district at the Banjo Bore tenements. Initial drilling has returned results such as 20m at 1.51g/t Au from 16m in 20MNRC003 and 17m at 2.67g/t Au from 7m in 20MNRC007 which are indicative of a mineralised system capable of producing significant widths of near-surface, economic gold grades. Follow up drilling is planned in the ensuing period.

Cue Gold Operations (CGO)

CGO performance was impacted by a delay in the onset of sub-level cave production at the Big Bell mine and resulting in lower than expected tonnes of high-grade ore feed to the process plant.

As was previously announced the first mass blast was fired in the Cave Zone at Big Bell (refer ASX announcement - Underground Sub-level Caving Recommences at Big Bell – 4 March 2020). Deteriorated ground conditions around old cave fronts presented difficulties where mining had ceased some 17 years prior. This necessitated a short-term change in strategy from conventional small blasts to a single mass blast of approximately 100,000 tonnes over 3 levels. Whilst not typical of the future production sequencing, the action was taken to reduce risk and longer-term consequences of cave hang-ups and ensure safe working areas as the normal caving cycles progressed.

The blast was successfully initiated and after seismicity exclusion zones had cleared, bogging commenced. Ore began to flow from the cave in mid-March 2020, marking the beginning of the end of massive 2 ½ year rehabilitation and refurbishment process for the mine.

The first ore to hit the process plant in the last week of the quarter following some minor delays in the preceding weeks. The critical path to ensure the old cave is moving, however is progressing nicely.

Figure 6: Image showing 560 Ore Drive and drawpoint after mass blast.

The recommencement of caving operations at Big Bell has been core to Westgold's Murchison strategy. It signals the end of the non-productive capital investment phase required to re-establish the Big Bell mine as a long term and reliable source of lower cost production. The progressive ramp-up to full production has begun with a minimum 10-year reserve and line of sight of 15 years of output at expected production of 100,000oz per annum or more. Ore production from Big Bell will make its first significant contribution to CGO gold output in the ensuing quarter and over the 20/21 financial year and will build to dominate gold output into the future.

During the past quarter the smaller than expected contribution from Big Bell as mill feed resulted in plant feedstock continuing to be reliant upon the low-grade open pits, existing stocks and the smaller Comet underground mine.

Overall underground mine output increased by 16% to 117,690t for the quarter and average mined grade increased by 0.34g/t to 3.15g/t. Open pit mining output was steady.

The process plant performed within expectations with output of 314,555 tonnes at 1.80g/t processed at a recovery of 90.3% producing 16,444 oz for the quarter.

Quarterly and 12-month rolling performance is illustrated in Figure 7 below:

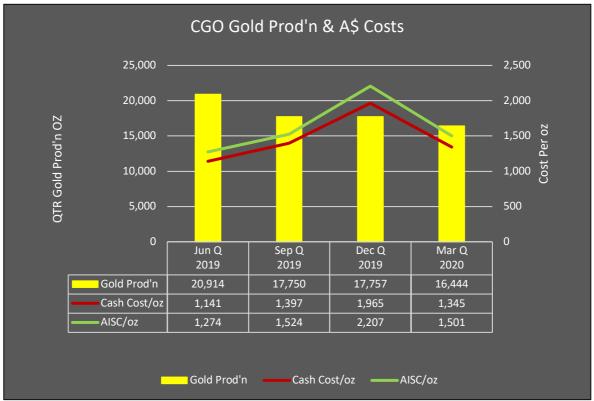


Figure 7: Quarterly and Rolling 12-month CGO Gold Production and Costs.

The rolling 12 months' gold output for CGO is 72,685oz at Cash Costs (C1) of A\$1,450/oz (~US\$914/oz) and AISC of A\$1,613/oz (~US\$1,016/oz).

Exploration activity focussed on the Comet mine and the nearby Pinnacles lodes. Underground diamond drilling tested the Pinnacle lode positions with positive results such as **24.74m at 5.04g/t Au from 110m in 20PNDD0016**. Whilst not a true width due to drill platform location the result is typical of the significant pockets of high-grade mineralisation within the Pinnacles sedimentary iron formations.

Additionally, following-on from the significant grass roots exploration results announced from the Fleece Pool North prospect in the last quarter (including **14m at 5.22g/t Au from 1m in 19CDRC008** - refer to ASX announcement - December 2019 – Quarterly Activities Report – 22 January 2020), follow-up work has produced a result of similar tenor, **16m at 7.77g/t Au from surface in 20CDRC008**. Additional works are being fast-tracked at Fleece Pool to determine if an open pit mine can be defined and approved in time for the upcoming round of mining at Cuddingwarra North late in the Calendar year.

Finally, at CGO, preparatory work has continued during the quarter for mining of the 700 North open pit which can be mine in parallel with the Fender open pit that started its pre-strip phase some 4 months ago. Pre-mining infill drilling at 700 North has largely been in line with expectations. However, results such at 10m at 12.05g/t Au from 36m in hole 20_700_042 are indicative of the likelihood of achieving upside against the expected Run of Mine grade once mining operations commence.

Minterra Pty Ltd (formerly Australian Contract Mining Pty Ltd "ACM")

Westgold is unique in the WA Australian mining sector in that it is dominantly an owner-operator of its mines. During the quarter Westgold's internal mining services division was been re-named as Minterra Pty Ltd (Minterra or MPL).

During the quarter Westgold re-organised the Minterra business strategy to focus solely on being a full-service underground mining contractor to the group and begin to expand its services into third party contracts.

Minterra performed steadily during the quarter expanding its output and fleet to grow with Westgold's expanding operations. The Minterra fleet now consists of the following key production units:

- 13 Twin Boom Jumbo drills;
- 20 Underground Loaders with remote capability;
- 9 Long hole production drill rigs;
- 18 Underground 60t capacity trucks;
- 5 Diamond drills;
- 2 Raise bore rigs;
- 9 Charge up machines;
- 15 Integrated tool carriers;
- 3 Concrete batch plants, 3 agitator trucks and 3 shotcrete machines and
- over 100 light vehicles, trucks and buses.

Surface open pit mining fleet and other service units have returned to assist with a separate open pit services division within the Group which also has substantial open pit mining and surface works equipment.

Guidance

As previously advised to the market during the March quarter, Westgold did not expect to achieve its market guidance until the Big Bell mine moved into the ramp-up mode post mass blasting. The delay in the onset of Big Bell production has so far delayed approximately 12,000oz of planned output for the year to date. Apart from the impact of Big Bell on the guidance for CGO, both the FGO and MGO operations are just short of previously stated physical guidance and well within cost guidance.

Whilst impacts from COVID-19 have so far been limited and operational workforce and output continues to be at an estimated 92-95% of capacity, there still remains potential for unforeseen impacts and/or imposts to operations in the next quarter. As such, Westgold believes it is not prudent to provide any forecast or guidance predictions for the period.

Westgold expects to provide guidance for FY20-21 as soon as it is in a position to do so with certainty.

Business Development

Musgrave Minerals Ltd (Musgrave – ASX: MGV)

Westgold is the largest single shareholder in its Cue Region neighbour Musgrave, with a shareholding of 16.01% at a value of \$6 million. Musgrave has achieved more exploration success during the quarter and close spaced infill drilling has confirmed and extended its global resources in the Cue Region.

RNC Minerals Ltd (TSX - RNC)

At the end of the quarter Westgold retained a shareholding of more than 50 million shares in RNC Minerals resulting from its divestment merger of those assets with RNC's Beta Hunt Mine.

The RNC/HGO merged assets continue to deliver impressive gold output for RNC Minerals with the current quarter results suggesting output of 24,816oz for the current quarter.

Lithium Interest

Westgold remains in discussions with Silverstream SSZ in efforts to complete its previously announced \$13 million sale of its Mount Marion Lithium Royalty Rights.

Share Registry

Westgold closed the quarter with the following capital structure:

Security Type	Issued
Fully Paid Ordinary Shares	399,899,957
Options at \$2.31 exp. 24/11/2020	3,695,000
Performance Rights (unvested)	1,642,337

Cash, Bullion and Liquid Assets

At March 31, 2020 Westgold held cash and bullion of \$40 million and shares in listed Companies with a market value of \$26 million. In addition, Westgold held restricted cash in the form of cash backed guarantees of \$2 million.

The gold pre-pay arrangement now stands at 3,750oz, after 3,750oz was repaid in the March quarter (approx. \$6 million).

Hedging

During February and March Westgold added to the hedge book, which now stands at 230,000oz at an average price of A\$2,057 per ounce in the form of fixed forwards deliverable at 10,000oz per month to February 2022 with the counterparty, Citibank.

14

Attachments

- 1. Tables of significant exploration intercepts received during the quarter.
- 2. JORC 2012 Table 1A

Compliance Statements

Exploration Targets, Exploration Results and Mineral Resources

The information in this report that relates to Exploration Targets, Exploration Results and Mineral Resources is compiled by Westgold technical employees and contractors under the supervision of Mr. Jake Russell B.Sc. (Hons), who is a member of the Australian Institute of Geoscientists. Mr Russell is a full time employee to the company, and has sufficient experience which is relevant to the styles of mineralisation and types of deposit under consideration and to the activities which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Russell consents to the inclusion in this report of the matters based on his information in the form and context in which it appears. Mr Russell is eligible to participate in short and long term incentive plans of the company.

Ore Reserves

The information in this report that relates to Ore Reserves is based on information compiled by Mr. Anthony Buckingham B.Eng (Mining Engineering) MAusIMM. Mr. Buckingham has sufficient experience which is relevant to the styles of mineralisation and types of deposit under consideration and to the activities which they are undertaking to qualify as a Competent Person as defined in the 2012 Editions of the "Australasian Code for Reporting of Exploration Results, Mineral Re-sources and Ore Reserves (JORC 2012)". Mr. Buckingham consents to the inclusion in this report of the matters based on his information in the form and context in which it appears. Mr. Buckingham is a full time senior executive of the Company and is eligible to, and may participate in short-term and long-term incentive plans of the Company as disclosed in its annual reports and disclosure documents.

Exploration Results

The information is extracted from the report entitled 'Exploration Highlights - 30 September 2019 Quarter' created by Westgold on 14 October 2019 and available to view on Westgold's website (www.westgold.com.au) and the ASX (www.asx.com.au). The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Forward Looking Statements

Certain statements in this report relate to the future, including forward looking statements relating to Westgold's financial position and strategy. These forward-looking statements involve known and unknown risks, uncertainties, assumptions and other important factors that could cause the actual results, performance or achievements of Westgold to be materially different from future results, performance or achievements expressed or implied by such statements. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement and deviations are both normal and to be expected. Other than required by law, neither Westgold, their officers nor any other person gives any representation, assurance or guarantee that the occurrence of the events expressed or implied in any forward-looking statements will actually occur. You are cautioned not to place undue reliance on those statements.

Meekatharra Gold OperationsSignificant (>5 gram x metres) intercepts for Q3 ending March 30, 2020.

	Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi
Paddy's F	lat Mine								
Hendrix		19HXDD129	7,056,318	650,248	261	2.62m at 2.66g/t Au	50	-1	110
Tiendix		1911/00 129	7,000,010	030,240	201	1m at 8.75g/t Au	100		110
		19HXDD135	7,056,266	650,174	244	7.37m at 2.35g/t Au	137	-14	84
		1011/02/20100	7,000,200	000,174	244	4.65m at 3.83g/t Au	198	1-7	04
		19HXDD136	7,056,265	650,174	244	11.52m at 2.34g/t Au	168	-19	93
		19HXDD140	7,056,265	650,173	245	9.5m at 5.09g/t Au	201	-7	106
		19HXDD141	7,056,265	650,173	245	3.4m at 3.54g/t Au	189	8	109
		19HXDD142	7,056,264	650,173	246	11.82m at 1.59g/t Au	192	20	117
		19HXDD143	7,056,264	650,173	245	3.19m at 2.29g/t Au	204	9	117
		19HXDD144	7,056,264	650,173	245	5.14m at 1.14g/t Au	196	-12	117
		1011/05/144	7,000,204	000,170	240	5.26m at 2.41g/t Au	233	12	117
		19HXDD145	7,056,264	650,173	245	3.49m at 2.34g/t Au	227	-4	121
Mudlode		19HXDD145	7,056,265	650,174	243		100	-19	93
ividalode		19HXDD130	7,056,264	650,173	244	1m at 8.47g/t Au 2m at 5.47g/t Au	101	20	117
		19MUDD168						0	
			7,056,504	650,430	252	5.06m at 3.18g/t Au	33		144
		19MUDD170	7,056,498	650,524	246	8m at 2.30g/t Au	21	-25	285
					212	5.22m at 6.34g/t Au	41		
		19MUDD171	7,056,498	650,524	246	0.87m at 6.55g/t Au	32	-16	337
						6.69m at 2.82g/t Au	37		
						4.55m at 2.51g/t Au	60		
		19MUDD172	7,056,499	650,524	246	8.92m at 2.59g/t Au	70	-18	352
		19MUDD173	7,056,498	650,524	245	5.21m at 1.91g/t Au	34	-39	332
						0.63m at 13.64g/t Au	46		
		19MUDD174	7,056,499	650,524	246	9.80m at 3.12g/t Au	52	-32	348
		19MUDD175	7,056,498	650,524	246	17m at 3.43g/t Au	38	-42	340
		19MUDD176	7,056,498	650,524	246	6.15m at 1.47g/t Au	30	-61	303
						4.18m at 10.66g/t Au	62		
		19MUDD177	7,056,498	650,524	246	3m at 1.75g/t Au	68	-36	357
		19MUDD178	7,056,498	650,513	246	4.44m at 1.49g/t Au	9	-23	257
						2.86m at 7.46g/t Au	23		
						2.10m at 6.38g/t Au	28		
		19MUDD179	7,056,498	650,512	245	4.78m at 2.01g/t Au	10	-45	270
		19MUDD180	7,056,499	650,514	245	9.5m at 3.52g/t Au	11	-66	283
						1m at 12.31g/t Au	27		
						4m at 5.51g/t Au	42		
						4.1m at 1.43g/t Au	54		
		19MUDD181	7,056,491	650,521	245	7m at 2.96g/t Au	30	-68	260
						4.37m at 2.31g/t Au	52		
						1.50m at 4.38g/t Au	68		
		19MUDD182	7,056,500	650,513	245	5.19m at 4.32g/t Au	12	-54	294
						6.89m at 14.46g/t Au	34		
		19MUDD184	7,056,499	650,524	247	3.17m at 2.37g/t Au	22	-10	297
						5.28m at 1.42g/t Au	40		
		19MUDD186	7,056,499	650,524	246	2.74m at 7.04g/t Au	25	-27	330
						5.90m at 1.40g/t Au	32		
						2.37m at 2.99g/t Au	163		
		19MUDD187	7,056,499	650,524	247	13m at 2.53g/t Au	78	-9	355
		19MUDD188	7,056,491	650,521	246	9m at 5.03g/t Au	46	-22	233
		19MUDD189	7,056,499	650,524	246	20.5m at 2.45g/t Au	39	-31	343
		19MUDD190	7,056,499	650,524		4m at 2.20g/t Au	73	-24	356
				/	246	17m at 1.39g/t Au	159		
		19MUDD191	7,056,498	650,524	246	14.68m at 4.66g/t Au	39	-22	342
		19MUDD191			246		26	-24	314
		19101010192	7,056,498	650,524	240	3.55m at 3.53g/t Au	20	-24	314

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi
					4.07			
					1.87m at 8.19g/t Au	51		
	19MUDD193	7,056,498	650,524	246	1.96m at 4.71g/t Au	22	-41	307
					5.63m at 2.42g/t Au	26		
					0.97m at 8.91g/t Au	108		
	19MUDD195	7,056,499	650,525	246	4m at 1.49g/t Au	158	-37	2
	19MUDD197	7,056,498	650,524	245	10m at 1.38g/t Au	42	-64	332
					1m at 6.18g/t Au	70		
					5.74m at 1.36g/t Au	76		
	19MUDD198	7,056,491	650,521	246	7.28m at 12.92g/t Au	60	-58	216
					8.21m at 8.20g/t Au	78		
Prohibition	19PRDD086	7,056,298	649,785	208	1.60m at 3.66g/t Au	48	-41	91
					3.74m at 1.54g/t Au	60		
					3m at 3.25g/t Au	67		
					3.9m at 3.62g/t Au	136		
					3.55m at 3.76g/t Au	151		
					3m at 2.48g/t Au	158		
					3.41m at 2.50g/t Au	166		
	19PRDD146A	7,056,243	650,123	243	3.15m at 5.03g/t Au	325	-57	242
					0.80m at 10.93g/t Au	357		
	19PRDD150	7,056,244	650,123	243	6.8m at 3.66g/t Au	290	-57	255
	19PRDD153	7,056,244	650,124	243	2.42m at 4.78g/t Au	264	-60	274
	20PRDD007	7,056,376	649,993	233	9.81m at 5.10g/t Au	118	-61	227
		,,.	,		1.94m at 2.74g/t Au	130		
					2.62m at 1.92g/t Au	145		
	20PRDD008	7,056,376	649,993	232	1.93m at 4.58g/t Au	84	-47	253
	20110000	7,000,070	040,000	202	15.06m at 2.58g/t Au	105		200
	200000019	7.056.400	640.079	250		0	20	EG
Mississis	20PRDD018	7,056,488	649,978		4m at 12.63g/t Au		-38	56
Vivian's	19VIDD055	7,056,313	650,219	245	0.44m at 30.29g/t Au	100	-73	141
	19VIDD055A	7,056,312	650,219	244	1m at 18.77g/t Au	61	-60	188
					2.62m at 24.52g/t Au	75		
					2m at 32.74g/t Au	85		
	19VIDD056	7,056,337	650,208	244	2.25m at 28.56g/t Au	0	-59	102
					0.47m at 22.71g/t Au	36		
					1m at 16.17g/t Au	59		
					1.80m at 11.93g/t Au	117		
					8.09m at 49.61g/t Au	140		
					3.60m at 8.99g/t Au	155		
	19VIDD057A	7,056,337	650,208	244	5m at 9.20g/t Au	0	-74	97
					1.53m at 23.11g/t Au	24		
					0.3m at 1590.70g/t Au	45		
					1m at 16.14g/t Au	75		
	19VIDD058	7,056,337	650,208	244	2.23m at 12.63g/t Au	0	-58	78
					2.24m at 24.29g/t Au	43		
					1m at 12.52g/t Au	67		
					3m at 3.07g/t Au	93		
					1m at 184.40g/t Au	105		
					1.72m at 8.90g/t Au	123		
	1				1.11m at 7.27g/t Au	133		
	1				2m at 3.35g/t Au	152		
					2.33m at 4.16g/t Au	159		
	19VIDD059	7,056,337	650,208	244	3.30m at 5.42g/t Au	0	-48	63
	.51.55003	.,000,001	333,200	277	4m at 5.93g/t Au	59	70	
	+				1m at 20.51g/t Au	66		
South Emu Mine					iii at 20.5 ig/t Au			
South Emu	19SEDD049	6,997,598	625,642	304	3.8m at 1.61g/t Au	66	-47	279
					11m at 1.18g/t Au	83		*
					3.41m at 2.40g/t Au	97		
	1							

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi
						. ,	·	
	19SEDD050	6,997,598	625,642	303	7.77m at 0.66g/t Au	64	-43	292
					10.35m at 0.91g/t Au	75		
					3.9m at 9.69g/t Au	97		
	19SEDD053	6,997,580	625,534	301	2.37m at 4.31g/t Au	26	-14	76
					14.37m at 1.79g/t Au	41		
	19SEDD054	6,997,581	625,534	301	7.72m at 4.93g/t Au	33	-12	56
					3.47m at 1.65g/t Au	46		
					18.1m at 2.28g/t Au	53		
	19SEDD055	6,997,580	625,534	300	5.36m at 3.81g/t Au	34	-39	76
					4.34m at 1.30g/t Au	46		
					7m at 1.10g/t Au	53		
					5.75m at 1.91g/t Au	64		
					3.96m at 1.53g/t Au	74		
	19SEDD056	6,997,581	625,534	300	15.26m at 3.22g/t Au	45	-35	50
					10.96m at 2.70g/t Au	63		
	19SEDD057	6,997,581	625,534	300	4.64m at 1.78g/t Au	54	-48	67
					15.5m at 0.92g/t Au	70		
	19SEDD058	6,997,568	625,532	301	6m at 1.38g/t Au	36	-14	96
					16m at 1.95g/t Au	45		
	19SEDD059	6,997,566	625,532	301	4.28m at 4.27g/t Au	65	-16	127
	19SEDD060	6,997,567	625,532	300	6m at 0.93g/t Au	52	-43	111
	19SEDD061	6,997,567	625,532	300	16m at 1.03g/t Au	50	-33	122
	19SEDD062	6,997,568	625,532	300	9m at 1.29g/t Au	60	-52	101
	19SEDD063	6,997,566	625,531	300	7m at 7.68g/t Au	65	-49	130
					2.2m at 3.64g/t Au	78		
	19SEDD064	6,997,580	625,535	300	19m at 2.25g/t Au	45	-42	99
					9.58m at 2.40g/t Au	67		
	19SEDD068	6,997,517	625,647	296	6m at 1.40g/t Au	84	-17	265
					3.5m at 10.74g/t Au	102		
	20SEDD002A	6,997,597	625,642	303	5.25m at 1.52g/t Au	117	-62	261
	20SEDD004	6,997,595	625,641	303	4.25m at 1.40g/t Au	73	-54	277
					4m at 1.53g/t Au	94		
					8.33m at 3.29g/t Au	102		
	20SEDD005	6,997,598	625,642	303	12.45m at 1.32g/t Au	108	-62	282
	20SEDD006	6,997,599	625,642	303	16m at 2.75g/t Au	100	-58	289
	20SEDD008	6,997,599	625,642	303	9m at 1.22g/t Au	101	-58	304
					8m at 2.84g/t Au	116		
	20SEDD009	6,997,597	625,642	303	3.82m at 1.33g/t Au	103	-52	309
	20SEDD010	6,997,568	625,531	300	3.99m at 1.81g/t Au	125	-68	81
	20SEDD012	6,997,568	625,532	300	5.23m at 1.64g/t Au	68	-57	92
					4.67m at 1.98g/t Au	81		
	20SEDD014	6,997,567	625,531	300	3.55m at 3.98g/t Au	54	-55	118
					3m at 1.67g/t Au	70		
					4m at 1.57g/t Au	99		
	20SEDD017	6,997,517	625,647	295	12.66m at 1.37g/t Au	132	-60	270
	20SEDD018	6,997,517	625,647	295	9m at 0.76g/t Au	80	-46	260
					3.5m at 2.24g/t Au	108		
					2.89m at 1.85g/t Au	116		
	20SEDD019	6,997,517	625,647	295	5.5m at 2.05g/t Au	98	-51	253
					6.48m at 2.47g/t Au	108		
	20SEDD024	6,997,599	625,642	303	4m at 1.61g/t Au	37	-47	298
					9.12m at 1.47g/t Au	76		
					12.61m at 4.10g/t Au	88		
	20SEDD025	6,997,740	625,597	401	6.16m at 1.22g/t Au	3	-28	279
					5.87m at 2.24g/t Au	18		
					4.97m at 1.73g/t Au	27		
	20SEDD026	6,997,740	625,597	402	3.63m at 3.65g/t Au	5	6	279

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi
Loue	Tiole	Ooliai N	Ooliai E	Oonar RE	intercept (Bowninoie)	Trom (m)	Бір	ALI
					14.3m at 1.25g/t Au	16		
	20SEDD027	6,997,758	625,603	398	7.13m at 1.44g/t Au	27	-34	278
	20SEDD028	6,997,759	625,603	399	7.12m at 2.33g/t Au	19	2	279
	20SEDD029	6,997,778	625,609	397	NSI		17	279
	20SEDD030	6,997,778	625,609	399	5.93m at 1.08g/t Au	8	48	273
Evaluration Cignificant Intercents	/>E v Crom v mo	troo\			9.43m at 2.92g/t Au	35		
Exploration Significant Intercepts	s (>5 x Gram x me	ires)						
Banjo Bore	20MNRC001	7,081,537	662,961	510	11m at 1.17g/t Au	7	-60	90
					11m at 1.21g/t Au	20		
	20MNRC003	7,081,563	662,971	510	20m at 1.51g/t Au	16	-60	138
	20MNRC004	7,081,562	662,995	510	4m at 0.97g/t Au	7	-60	90
	20MNRC007	7,081,544	662,988	510	17m at 2.67g/t Au	7	-60	318
					8m at 0.61g/t Au	28		
Resource Development								
Gidgee Laterite	19BMRC001	7,007,703	627,910	456	7m at 0.72a/t Au	0	00	000
<u> </u>	19BMRC003	7,007,706	627,925	456	7m at 0.73g/t Au 9m at 0.83g/t Au	1	-90 -90	000
	19BMRC004	7,007,707	627,915	456	9m at 0.83g/t Au 7m at 1.04g/t Au	0	-90 -90	000
	19BMRC009	7,007,709	627,905	456	5m at 1.21g/t Au	1	-90	000
	19BMRC011	7,007,714	627,936	456	11m at 0.87g/t Au	1	-90	000
	19BMRC012	7,007,716	627,926	456	8m at 1.17g/t Au	1	-90	000
	19BMRC013	7,007,717	627,916	456	6m at 1.01g/t Au	0	-90	000
	19BMRC016	7,007,717	627,947	456	8m at 0.66g/t Au	2	-90	000
	19BMRC021	7,007,726	627,928	456	8m at 1g/t Au	1	-90	000
	19BMRC025	7,007,728	627,943	456	11m at 0.83g/t Au	2	-90	000
	19BMRC026	7,007,730	627,933	456	10m at 0.79g/t Au	1	-90	000
	19BMRC027	7,007,731	627,924	456	7m at 0.86g/t Au	2	-90	000
	19BMRC028	7,007,733	627,914	456	6m at 1.26g/t Au	1	-90	000
	19BMRC029	7,007,733	627,912	456	6m at 1g/t Au	1	-50	270
	19BMRC032	7,007,734	627,939	456	9m at 0.77g/t Au	2	-90	000
	19BMRC033	7,007,736	627,930	456	7m at 0.88g/t Au	2	-90	000
	19BMRC034	7,007,737	627,920	456	7m at 0.81g/t Au	2	-90	000
	19BMRC035	7,007,738	627,916	456	6m at 1.22g/t Au	2	-50	270
	19BMRC037	7,007,738	627,945	456	9m at 0.78g/t Au	2	-90	000
	19BMRC038	7,007,740	627,935	456	8m at 1.06g/t Au	2	-90	000
	19BMRC039	7,007,741	627,925	456	8m at 1.43g/t Au	1	-90	000
	19BMRC040	7,007,742	627,920	456	6m at 0.94g/t Au	2	-50	270
	19BMRC041	7,007,741	627,955	456	7m at 0.73g/t Au	3	-90	000
	19BMRC042	7,007,746	627,923	456	7m at 1.3g/t Au	2	-50	270
	19BMRC044	7,007,746	627,961	456	11m at 0.79g/t Au	1	-90	000
	19BMRC045	7,007,747	627,952	456	13m at 0.8g/t Au	2	-90	000
	19BMRC046	7,007,749	627,941	456	11m at 0.96g/t Au	2	-90	000
	19BMRC047	7,007,750	627,932	456	7m at 1.53g/t Au	3	-90	000
	19BMRC048	7,007,751	627,928	456	9m at 1.05g/t Au	2	-50	270
	19BMRC050	7,007,750	627,967	456	7m at 0.82g/t Au	5	-90	000
	19BMRC051	7,007,751	627,957	456	9m at 0.81g/t Au	3	-90	000
	19BMRC052	7,007,753	627,947	456	13m at 0.87g/t Au	3	-90	000
	19BMRC053	7,007,754	627,938	456	8m at 0.79g/t Au	2	-90	000
	19BMRC054	7,007,755	627,934	456	8m at 1.23g/t Au	3	-49	282
	19BMRC056	7,007,754	627,973	456	10m at 0.69g/t Au	3	-90	000
		7,007,756	627,963	456	8m at 0.77g/t Au	3	-90	000
	19BMRC057							
	19BMRC057 19BMRC058	7,007,757	627,953	456	12m at 0.9g/t Au	2	-90	000
		7,007,757 7,007,759	627,953 627,943	456 456	12m at 0.9g/t Au 11m at 1.11g/t Au		-90 -90	000
	19BMRC058				11m at 1.11g/t Au	2	-90	000
	19BMRC058 19BMRC059	7,007,759	627,943	456	11m at 1.11g/t Au 11m at 1.3g/t Au	2		
	19BMRC058 19BMRC059 19BMRC060	7,007,759 7,007,759	627,943 627,940	456 456	11m at 1.11g/t Au	2	-90 -49	000 279

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi
Lode	Tiole	Ooliai N	Oonar E	Oonar RE	intercept (Bownnoie)	Troin (iii)	Бір	ALI
	19BMRC065	7,007,764	627,944	456	10m at 1.04g/t Au	3	-49	284
	19BMRC067	7,007,764	627,974	456	10m at 0.72g/t Au	3	-90	000
	19BMRC070	7,007,786	627,995	456	5m at 1.05g/t Au	3	-90	000
	19BMRC072	7,007,789	628,008	455	6m at 1.21g/t Au	3	-90	000
	19BMRC073	7,007,790	627,999	455	5m at 1.35g/t Au	3	-90	000
	19BMRC075	7,007,798	628,011	455	6m at 0.91g/t Au	3	-90	000
	19BMRC078	7,007,809	628,012	455	7m at 0.97g/t Au	2	-90	000
	19BMRC080	7,007,814	628,008	456	5m at 1.23g/t Au	3	-90	000
	19BMRC081 19BMRC082	7,007,810 7,007,796	628,001 627,997	456 456	5m at 1.39g/t Au	3	-90	000
	19BMRC085	7,007,766	627,957	456	9m at 0.75g/t Au	3	-90	000
	19BMRC086	7,007,768	627,949	456	14m at 1.04g/t Au	2	-90	000
	19BMRC087	7,007,768	627,980	456	10m at 1.27g/t Au	3	-90	000
	19BMRC088	7,007,770	627,970	456	14m at 0.73g/t Au 15m at 0.78g/t Au	3	-90 -90	000
	19BMRC089	7,007,771	627,960	456	13m at 0.79g/t Au	2	-90	000
	19BMRC090	7,007,772	627,954	456	16m at 1.05g/t Au	3	-48	282
	19BMRC092	7,007,774	627,976	456	16m at 1.08g/t Au	3	-90	000
	19BMRC093	7,007,775	627,966	456	16m at 1g/t Au	3	-90	000
	19BMRC094	7,007,776	627,959	456	17m at 1.3g/t Au	3	-50	281
	19BMRC095	7,007,779	627,982	456	14m at 1g/t Au	3	-90	000
	19BMRC096	7,007,780	627,972	456	17m at 1.07g/t Au	3	-90	000
	19BMRC097	7,007,780	627,964	456	17m at 1.21g/t Au	3	-90	000
	19BMRC098	7,007,781	627,962	456	14m at 1.29g/t Au	4	-50	276
	19BMRC099	7,007,784	627,974	456	16m at 1.17g/t Au	3	-90	000
	19BMRC100	7,007,785	627,966	456	16m at 1.03g/t Au	3	-90	000
	19BMRC101	7,007,785	627,965	456	18m at 1.47g/t Au	3	-50	279
	19BMRC102	7,007,788	627,985	456	14m at 0.8g/t Au	3	-90	000
	19BMRC103	7,007,792	627,988	456	12m at 0.97g/t Au	3	-90	000
	19BMRC104	7,007,794	627,979	456	14m at 1.24g/t Au	3	-90	000
	19BMRC105 19BMRC106	7,007,789	627,971 627,967	456 456	20m at 0.98g/t Au	2	-90	000
	19BMRC107	7,007,795	627,969	456	17m at 1.26g/t Au	3	-49	278
	19BMRC108	7,007,795	627,968	456	19m at 0.91g/t Au	2	-90	000
	19BMRC109	7,007,799	627,975	456	18m at 1.28g/t Au 10m at 0.89g/t Au	2	-49 -90	281
	19BMRC111	7,007,824	628,009	456	5m at 1.11g/t Au	3	-90	000
	19BMRC116	7,007,800	627,969	456	21m at 1.44g/t Au	3	-49	279
	19BMRC117	7,007,803	627,980	456	16m at 1.34g/t Au	2	-90	000
	19BMRC118	7,007,805	627,971	456	20m at 1.18g/t Au	2	-90	000
	19BMRC119	7,007,806	627,967	456	18m at 1.32g/t Au	2	-50	281
	19BMRC120	7,007,807	627,986	456	15m at 1.3g/t Au	2	-90	000
	19BMRC121	7,007,809	627,977	456	12m at 0.78g/t Au	2	-90	000
	19BMRC122	7,007,810	627,968	456	15m at 0.95g/t Au	2	-90	000
	19BMRC123	7,007,811	627,966	456	18m at 1.15g/t Au	2	-48	281
	19BMRC124	7,007,812	627,992	456	13m at 1.51g/t Au	3	-90	000
	19BMRC125	7,007,816	627,998	456	5m at 1.32g/t Au	3	-90	000
	19BMRC126	7,007,817	627,987	456	5m at 1.16g/t Au	3	-90	000
	19BMRC127	7,007,816	627,965	456	18m at 0.99g/t Au	2	-49	280
	19BMRC128 19BMRC129	7,007,819	627,978	456	11m at 0.86g/t Au	2	-90	000
	19BMRC129 19BMRC130	7,007,820 7,007,821	627,968 627,964	456 456	12m at 0.91g/t Au	1	-90	000
	19BMRC131	7,007,821	627,964	456	16m at 1.1g/t Au	2	-49	281
	19BMRC131	7,007,825	627,963	456	13m at 0.94g/t Au	2	-90	000
	19BMRC133	7,007,827	627,990	456	17m at 0.94g/t Au	2	-49	283
	19BMRC134	7,007,829	627,980	456	5m at 1.18g/t Au	3	-90 -90	000
	19BMRC135	7,007,830	627,970	456	9m at 0.8g/t Au 11m at 0.91g/t Au	1	-90 -90	
	19BMRC136	7,007,831	627,965	456	11m at 0.91g/t Au 10m at 0.97g/t Au	2	-70	000 279
	19BMRC137	7,007,831	627,964	456	18m at 1.08g/t Au	2	-48	281
	1				Tomat 1.00g/t Au	-	70	201

	· · · · · · · · · · · · · · · · · · ·							
Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi
	19BMRC138	7,007,831	627,995	456	8m at 0.75g/t Au	3	-90	000
	19BMRC138	7,007,831	627,995	456	6m at 0.95g/t Au	12	-90	000
	19BMRC139	7,007,833	627,985	455	9m at 1.05g/t Au	3	-90	000
	19BMRC140	7,007,834	627,975	456	11m at 0.92g/t Au	2	-90	000
	19BMRC141	7,007,836	627,967	456	6m at 1.89g/t Au	14	-90	000
	19BMRC142	7,007,836	627,965	456	12m at 0.87g/t Au	3	-48	285
	19BMRC147	7,007,846	627,970	456	9m at 0.75g/t Au	2	-90	000
	19BMRC148	7,007,846	627,968	456	18m at 0.69g/t Au	3	-47	282
	19BMRC149	7,007,849	628,012	455	5m at 1g/t Au	3	-90	000
	19BMRC154	7,007,856	627,972	456	13m at 0.68g/t Au	3	-49	282
	19BMRC156	7,007,858	627,988	456	6m at 0.95g/t Au	2	-90	000
	19BMRC157	7,007,859	627,979	455	8m at 0.7g/t Au	3	-90	000
	19BMRC158	7,007,860	628,009	456	4m at 1.39g/t Au	4	-90	000
	19BMRC158	7,007,860	628,009	456	5m at 2.15g/t Au	13	-90	000
	19BMRC160	7,007,865	628,006	456	5m at 1.18g/t Au	3	-90	000
	19BMRC162	7,007,868	627,987	456	16m at 0.93g/t Au	3	-90	000
	19BMRC163	7,007,870	627,978	456	11m at 0.78g/t Au	2	-90	000
	19BMRC164	7,007,879	627,982	456	14m at 0.76g/t Au	3	-49	282
	19BMRC165	7,007,878	627,987	456	12m at 0.86g/t Au	3	-90	000
	19BMRC166	7,007,877	627,997	456	4m at 1.32g/t Au	3	-90	000
	19BMRC167	7,007,875	628,007	456	4m at 1.31g/t Au	4	-90	000
	19BMRC168	7,007,884	627,985	456	19m at 0.81g/t Au	3	-48	280
	19BMRC169	7,007,882	627,993	456	10m at 0.79g/t Au	3	-90	000
	19BMRC170	7,007,881	628,003	456	6m at 2.49g/t Au	2	-90	000
	19BMRC171	7,007,889	627,987	455	11m at 0.82g/t Au	3	-90	000
	19BMRC172	7,007,887	627,997	455	8m at 0.81g/t Au	3	-90	000
	19BMRC174	7,007,894	627,983	455	16m at 0.88g/t Au	3	-49	277
	19BMRC175	7,007,894	627,985	455	8m at 0.92g/t Au	2	-90	000
	19BMRC176	7,007,892	627,995	455	4m at 1.33g/t Au	3	-90	000
	19BMRC177	7,007,897	627,997	456	5m at 1.08g/t Au	3	-90	000
	19BMRC178	7,007,904	627,985	456	12m at 0.9g/t Au	4	-49	284
	19BMRC179	7,007,904	627,987	456	4m at 1.35g/t Au	3	-90	000
	19BMRC180	7,007,902	627,996	456		3	-90	000
	19BMRC182	7,007,906	628,001	455	5m at 1.12g/t Au 5m at 1.03g/t Au	3	-90	000
	19BMRC183	7,007,909	627,986	456	11m at 0.84g/t Au	4	-49	278
	19BMRC185	7,007,915	627,993	456	4m at 1.36g/t Au	3	-90	000
	19BMRC188	7,007,914	628,008	455	6m at 0.96g/t Au	4	-90	000
	19BMRC189	7,007,917	627,998	456	7m at 1.04g/t Au	1	-90	000
	19BMRC190	7,007,918	627,990	456	5m at 1.13g/t Au	3	-90	000
	19BMRC191	7,007,918	627,989	456		4		
	19BMRC193	7,007,923	627,990	456	9m at 0.83g/t Au		-49	283
	19BMRC194	7,007,925	628,010	455	11m at 0.9g/t Au	4	-50 -90	283
					5m at 1.1g/t Au 4m at 2.82g/t Au	14	-90	000
	19BMRC197	7,007,928	627,992	456			50	283
	19BMRC198	7,007,930	628,015	455	7m at 1.3g/t Au	3	-50 -90	000
	19BMRC199	7,007,931	628,006	456	5m at 1.11g/t Au 5m at 1.37g/t Au	4	-90	000
	19BMRC201	7,007,932	627,994	456	11m at 0.89g/t Au	5	-48	279
	19BMRC202	7,007,937	627,996	456	6m at 1.17g/t Au	3	-48	000
	19BMRC203	7,007,936	628,007	456	6m at 1.01g/t Au	4	-90	000
	19BMRC204	7,007,943	627,996	456	6m at 1.12g/t Au	5	-50	280
	19BMRC206	7,007,940	628,012	455	5m at 1.12g/t Au	4	-90	000
	19BMRC209	7,007,953	627,999	456		5	-50	277
	19BMRC211	7,007,952	628,016	455	7m at 1.04g/t Au			000
	19BMRC212	7,007,957	628,000	455	5m at 1.07g/t Au	6	-90 -49	279
	19BMRC213	7,007,957	628,002	455	6m at 0.99g/t Au	4		000
	19BMRC214	7,007,956	628,009	455	5m at 1.08g/t Au		-90 -90	
	19BMRC215	7,007,851	627,970	456	6m at 1.03g/t Au	5	-90	000
L		, ,	,		10m at 0.72g/t Au	4	-49	283

22

Cue Gold OperationsSignificant (>5 gram x metres) intercepts for Q3 ending March 30, 2020.

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi
D: D !!!!						` ′	·	
Big Bell Underground Mine								
Big Bell	19BBDD0071	6,977,932	564,891	133	5.0m at 2.79g/t Au	65	-6	
					7.0m at 5.25g/t Au	75		
					2.0m at 3.77g/t Au	85		
					6.0m at 3.06g/t Au	92		
	19BBDD0072	6,977,932	564,891	134	6.48m at 2.29g/t Au	76	-20	
					8.0m at 6.1g/t Au	88		
					5.0m at 2.84g/t Au	97		
					12.75m at 5.15g/t Au	103		
					5.05m at 1.27g/t Au	116		
					2.0m at 2.85g/t Au	124		
	19BBDD0081	6,977,858	564,822	127	9.30m at 2.18g/t Au	79	-10	
					13m at 1.70g/t Au	89		
					8.0m at 6.20g/t Au	102		
					13m at 2.40g/t Au	109		
	19BBDD0082	6,977,857	564,822	128	5.0m at 5.25g/t Au	96	-21	
					2.0m at 8.71g/t Au	105		
					3.75m at 1.60g/t Au	117		
	19BBDD0083	6,977,856	564,821	127	4.0m at 5.01g/t Au	118	-32	
					3.54m at 2.97g/t Au	132		
					3.60m at 8.1g/t Au	141		
					12.10m at 5.71g/t Au	147		
					11.7m at 3.02g/t Au	162		
	19BBDD0084	6,977,856	564,822	127	27m at 3.62g/t Au	75	4	
	19BBDD0085	6,977,856	564,821	127	28m at 3.65g/t Au	86	-11	
	19BBDD0086	6,977,857	564,822	128	13.2m at 3.69g/t Au	116	-32	
					2.2m at 2.85g/t Au	135	-32	
					10.32m at 2.28g/t Au	150	-32	
	19BBDD0087	6,977,845	564,818	127	26m at 3.16g/t Au	72	6	
	19BBDD0088	6,977,845	564,818	127	32.65m at 3.49g/t Au	75	-8	
	19BBDD0089	6,977,845	564,818	128	23.75m at 3.25g/t Au	102	-20	
	19BBDD0090	6,977,845	564,818	128	8.5m at 1.82g/t Au	115	-30	
					33m at 3.4g/t Au	129	-30	
	19BBDD0093	6,977,778	564,743	88	14m at 5.33g/t Au	80	2	
					13.19m at 2.1g/t Au	100	2	
	19BBDD0094	6,977,778	564,743	89	33.99m at 2.53g/t Au	98	-12	
	20BBDD002	6,977,626	564,722	53	6.55m at 2.27g/t Au	13	-19	
	20BBDD005	6,977,587	564,696	53	4.02m at 2.07g/t Au	16	-56	
Pinnacles	20PNDD0002	6,953,201	602,813	343	2.17m at 16.13g/t Au	102	6	295
	20PNDD0003	6,953,201	602,813	343	1.71m at 6.1g/t Au	91	-2	300
					3m at 1.63g/t Au	98		
	20PNDD0004	6,953,201	602,814	342	6.34m at 2.75g/t Au	84	-11	303
	20PNDD0005	6,953,202	602,814	343	5.22m at 2.02g/t Au	100	7	307
	20PNDD0006	6,953,202	602,814	343	2.68m at 9.08g/t Au	88	-1	313
	000100007	0.050.000	200 044	0.40	9.2m at 1.53g/t Au	92		
	20PNDD0007	6,953,202	602,814	343	7.8m at 5.09g/t Au	97	7	322
	20PNDD0008	6,953,202	602,814	342	6.5m at 4.06g/t Au	82	-10	322
	20PNDD0009 20PNDD0010	6,953,267	602,807	355 355	7.69m at 2.36g/t Au	42	-22	296
	20FNDDU1U	6,953,267	602,807	355	8m at 2.38g/t Au	42	-43	310
	20000000044	6.050.007	600.007	055	1.63m at 2.04g/t Au	56		
	20PNDD0011	6,953,267	602,807	355	2.46m at 3.01g/t Au	50	-26	335
	20PNDD0012A	6,953,269	602,808	355	4m at 1.94g/t Au	43	-41	345
	20PNDD0016	6,953,227	602,833	350	24.74m at 5.04g/t Au	110	3	357
	20PNDD0017	6,953,226	602,833	350	3.33m at 3.4g/t Au	91	-5	359

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi
						. ()		
	20PNDD0020	6,953,334	602,784	364	5.57m at 2.58g/t Au	27	14	63
					3.1m at 1.68g/t Au	58		
	20PNDD0021	6,953,323	602,776	363	2.38m at 3.71g/t Au	20	16	101
	20PNDD0022	6,953,322	602,776	363	0.94m at 7.36g/t Au	17	11	140
Resource Development								
City of Chester	19CCRC0025	6,976,363	578,149	419	5m at 1.11g/t Au	52	-50	269.0
	19CCRC0027	6,976,333	578,154	419	2m at 4.54g/t Au	69	-60	269.0
	19CCRC0028	6,976,293	578,165	419	4m at 21.65g/t Au	73	-52	269.0
	19CCRC0029	6,976,092	578,581	418	6m at 1.67g/t Au	57	-55	269.0
	19CCRC0030	6,976,083	578,582	418	5m at 1.41g/t Au	55	-53	269.0
	19CCRC0032	6,976,280	578,521	419	2m at 3.86g/t Au	70	-60	269.0
					5m at 4.35g/t Au	77		
					3m at 1.89g/t Au	87		
Coventry	19CVRC0008A	6,975,930	579,256	417	8m at 1.6g/t Au	11	-60	270.1
	19CVRC0029	6,975,890	579,262	416	5m at 2.41g/t Au	9	-59	266.8
	19CVRC0030	6,975,870	579,266	416	6m at 1.37g/t Au	5	-60	271.9
					9m at 1.79g/t Au	14		
	19CVRC0031	6,975,870	579,232	416	15m at 7.68g/t Au	6	-60	270.0
	19CVRC0032	6,975,860	579,269	416	4m at 1.71g/t Au	19	-60	271.7
	20CVRC004	6,975,870	579,242	416	2m at 5.29g/t Au	15	-58	270.9
Fleece Pool North	20CDRC001	6,973,490	580,805	418	8m at 0.96g/t Au	0	-61	269.2
	20CDRC004	6,973,550	580,835	418	6m at 1.42g/t Au	24	-61	270.7
	20CDRC006	6,973,549	580,801	418	1m at 6.83g/t Au	6	-51	093.7
					12m at 3.61g/t Au	12		
	20CDRC006	6,973,549	580,801	418	6m at 0.96g/t Au	27	-51	093.7
	20CDRC007	6,973,580	580,845	418	15m at 3.67g/t Au	13	-60	270.4
	20CDRC008	6,973,580	580,830	418	16m at 7.77g/t Au	0	-60	268.3
	20CDRC010	6,973,590	580,845	418	5m at 1.72g/t Au	10	-60	266.4
	20CDRC013	6,973,600	580,830	418	6m at 1.26g/t Au	3	-60	270.6
	20CDRC014	6,973,620	580,845	418	13m at 1.5g/t Au	3	-60	270.1
	20CDRC015	6,973,620	580,830	418	6m at 1.96g/t Au	0	-61	268.8
	20CDRC016	6,973,620	580,815	418	2m at 5.04g/t Au	8	-61	268.8
	20CDRC017	6,973,640	580,845	418	11m at 1.36g/t Au	0	-61	270.5
	20CDRC019	6,973,550	580,752	418	2m at 3.71g/t Au	8	-61	272.0
Fleece Pool South	19CDRC017	6,972,930	580,711	420	15m at 1.88g/t Au	19	-61	269.1
	19CDRC018	6,972,930	580,720	420	5m at 1.01g/t Au	8	-59	274.6
	19CDRC021	6,972,875	580,721	420	4m at 1.4g/t Au	0	-59	274.5
O	19CDRC022	6,972,850	580,720	420	9m at 1.3g/t Au	36	-60	277.6
Great Fingall	20GFRC001	6,962,207	584,724	283	8m at 3.46g/t Au	0	-70	256.6
	20GFRC002	6,962,195	584,724	283	3m at 1.99g/t Au	46		
	20GFRC002	0,902,193	304,724	203	11m at 2.46g/t Au	0	-59	222.3
	20GFRC003	6,962,200	584,727	283	15m at 1.37g/t Au	57		
	2001110000	0,302,200	304,727	200	7m at 1.92g/t Au	0	-70	230.6
					9m at 1.14g/t Au	26		
					7m at 1.12g/t Au	42		
	20GFRC004	6,962,220	584,731	283	4m at 2.18g/t Au	50	70	010.7
		-,- 32,223	231,701	200	6m at 1.71g/t Au	0	-78	213.7
		<u> </u>			2m at 3.12g/t Au	34		
	20GFRC005	6,962,181	584,743	278	3m at 2.39g/t Au	39	E7	245.4
	22.1.2000	.,===,.01	,, .0	2.0	9m at 3.87g/t Au	1 24	-57	215.1
					1m at 5.52g/t Au	34 41		
		<u> </u>			1m at 21.76g/t Au	41		
	20GFRC006	6962175.3	584,754	278	7m at 2.35g/t Au 6m at 3.3g/t Au	8	-59	219.4
		0302173.3			4m at 2.18g/t Au	17	-58	219.4
					4m at 1.92g/t Au	24		
L	1	1	i	i .	4111 at 1.92g/t Au	24		

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi
					2m at 4.97g/t Au	35		
					4m at 2.31g/t Au	41		
	20GFRC007	6,962,185	584,740	278	13m at 2.51g/t Au	41	-60	244.7
	20GFRC008	6,962,184	584,742	278	3m at 3.27g/t Au	0	-73	229.1
					5m at 1.13g/t Au	6		
					6m at 0.98g/t Au	24		
					8m at 1.38g/t Au	32		
	20GFRC009	6,962,211	584,721	283	13m at 6.48g/t Au	0	-45	275.7
Open Pit								
700	20_700_010	6,975,419	563,167	437	4m at 1.49g/t Au	39	-60	300
	20_700_013	6,975,427	563,178	437	10m at 3.97g/t Au	41	-60	302
	20_700_014	6,975,431	563,171	437	2m at 2.74g/t Au	30	-60	300
					4m at 4.97g/t Au	36		
	20_700_015	6,975,434	563,165	437	2m at 2.64g/t Au	22	-60	301
	20_700_016	6,975,432	563,181	437	8m at 2.66g/t Au	44	-60	297
	20_700_017	6,975,440	563,168	437	3m at 3.31g/t Au	15	-60	300
	20_700_019	6,975,459	563,197	437	13m at 4.49g/t Au	28	-60	303
	20_700_020	6,975,463	563,190	437	10m at 4.84g/t Au	18	-60	303
	20_700_021	6,975,464	563,200	437	7m at 3.22g/t Au	29	-60	302
	20 700 022	6,975,470	563,203	437		27	-60	303
	20_700_023	6,975,473	563,197	437	14m at 2.90g/t Au			
	20_700_024	6,975,479	563,212	437	10m at 2.14g/t Au	19	-60	302
	20_700_025	6,975,483	563,205	437	5m at 3.59g/t Au	29	-61	300
	20_700_026	6,975,486	563,212	437	3m at 2.07g/t Au	16	-61	299
	20_700_027	6,975,489	563,220	437	12m at 5.41g/t Au	18	-59	297
	20_700_029	6,975,498	563,229	437	9m at 3.94g/t Au	26	-60	296
	20_700_030	6,975,502	563,222	437	7m at 2.53g/t Au	29	-60	299
	20_700_031	6,975,502	563,234	437	8m at 1.92g/t Au	15	-59	302
	20_700_031	6,975,505	563,241	437	4m at 1.46g/t Au	33	-61	299
	20_700_032	6,975,509	563,235	437	7m at 1.38g/t Au	35	-58	295
	+	6,975,513	563,240	437	7m at 1.48g/t Au	23	-59	295
	20_700_035	6,975,438	563,184	437	3m at 2.41g/t Au	27	-60	301
		+	563,187	437	16m at 2.64g/t Au	31	-60	300
	20_700_038	6,975,443			17m at 1.61g/t Au	34	-60	300
	20_700_039	6,975,447	563,192	437	11m at 6.81g/t Au	37	-60	301
	20_700_040	6,975,455 6,975,462	563,203	437	8m at 4.41g/t Au	41	-59	304
	20_700_041	6,975,462	563,215	437	9m at 2.38g/t Au	49	-61	304
					3m at 6.60g/t Au	62		
	20_700_042	6,975,467	563,208	437	10m at 12.05g/t Au	36	-61	301
	20_700_043	6,975,472	563,225	437	11m at 1.58g/t Au	49	-61	310
	20_700_044	6,975,475	563,218	437	10m at 2.08g/t Au	40	-60	304
	20_700_045	6,975,478	563,226	437	12m at 1.57g/t Au	42	-60	306
	20_700_046	6,975,481	563,234	437	14m at 1.41g/t Au	51	-60	303
	20_700_047	6,975,490	563,230	437	10m at 7.63g/t Au	40	-61	301
	20_700_048	6,975,485	563,227	437	11m at 2.62g/t Au	40	-60	301
	20_700_049	6,975,495	563,236	437	4m at 2.63g/t Au	43	-60	304
	20_700_050	6,975,498	563,241	437	5m at 3.39g/t Au	47	-60	301
	20_700_051	6,975,489	563,245	437	7m at 1.12g/t Au	54	-58	305
South Victory	20SVRC036	6,968,872	579,278	421	11m at 0.99g/t Au	10	-59	272
	20SVRC037	6,968,852	579,283	421	9m at 1.09g/t Au	24	-59	271
	20SVRC041	6,968,858	579,290	421	2m at 4.66g/t Au	35	-59	271
	20SVRC045	6,968,857	579,271	421	5m at 1.18g/t Au	9	-60	271
	20SVRC049	6,968,817	579,261	420	2m at 16.61g/t Au	11	-59	271

Fortnum Gold OperationsSignificant (>5 gram x metres) intercepts for Q3 ending March 31, 2020.

		-		_				
Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi
Starlight Underground Mine								
Nightfall	WGU0315	7,198,790	636,698	162	4m at 3.1g/t Au	53	-20	27
	WGU0316	7,198,790	636,698	162	2.5m at 4.15g/t Au	38	3	33
	WGU0321	7,198,790	636,698	162	2.25m at 15.77g/t Au	126	-16	349
	WGU0323	7,198,790	636,698	162	3m at 5.31g/t Au	18	-17	338
	WGU0326	7,198,790	636,698	162	6m at 4.92g/t Au	45	3	322
	WGU0330	7,198,790	636,698	162	2.6m at 13.58g/t Au	9	3	287
					2.4m at 10.97g/t Au	98		
	WGU0412	7,198,839	636,698	227	2.48m at 13.28g/t Au	34	-49	61
	WGU0413	7,198,839	636,698	227	3.79m at 4.08g/t Au	32	1	60
	WGU0414	7,198,839	636,698	227	8m at 1.94g/t Au	39	4	30
					4m at 2.96g/t Au	116		
					7.14m at 2.09g/t Au	123		
Starlight	WGU0313	7,198,709	636,617	146	2m at 2.61g/t Au	12	41	296
	WGU0314	7,198,709	636,618	146	3.42m at 11.29g/t Au	4	15	325
	WGU0315A	7,198,701	636,619	146	2m at 8.51g/t Au	33	19	279
	WGU0316A	7,198,709	636,617	146	15.1m at 2.58g/t Au	42	11	306
Twilight	WGU0351	7,198,790	636,698	162	3m at 2.34g/t Au	124	-16	43
	WGU0353	7,198,790	636,698	162	2.17m at 5.02g/t Au	151	14	73
	WGU0354	7,198,790	636,698	162	3m at 2.95g/t Au	121	-16	74
	WGU0356	7,198,790	636,698	162	3m at 3.17g/t Au	67	-2	88
					3.25m at 3.22g/t Au	83		
					7m at 2.17g/t Au	140		
	WGU0357	7,198,790	636,698	162	2m at 2.8g/t Au	80	-14	104
	WGU0358	7,198,790	636,698	162	2.4m at 17.92g/t Au	55	13	104
					3.1m at 21.35g/t Au	132		
					4m at 2.72g/t Au	173		
					2.35m at 2.15g/t Au	193		
	WGU0239	7,198,838	636,507	325	6.9m at 1.49g/t Au	53	6	230
	WGU0239	7,198,838	636,507	325	3.09m at 8.39g/t Au	67	6	230
	WGU0240	7,198,838	636,507	325	5.21m at 3.2g/t Au	34	-13	280
	WGU0241	7,198,838	636,507	325	4.85m at 3.7g/t Au	51	-13	255
	WGU0242	7,198,838	636,507	325	17.7m at 3.78g/t Au	51	-11	239
					4m at 10.67g/t Au	88	-11	239
	WGU0244	7,198,812	636,575	313	3m at 2.26g/t Au	46	-28	283
					3.03m at 4.24g/t Au	60	-28	283
					5.51m at 25.72g/t Au	70	-28	283
	WGU0244A	7,198,812	636,575	313	21m at 2.11g/t Au	79	-28	325
	WGU0245	7,198,812	636,575	313	3m at 4.36g/t Au	49	-27	257
					18m at 27.6g/t Au	64	-27	257
	WGU0245A	7,198,812	636,575	313	10m at 1.36g/t Au	78	-37	305
	WGU0246	7,198,812	636,575	313	4.85m at 5.7g/t Au	115	18	231
	WGU0247	7,198,812	636,575	313	3.24m at 6.76g/t Au	142	7	245
	WGU0248	7,198,812	636,575	313	7.45m at 3.83g/t Au	140	7	230
	WGU0248A	7,198,812	636,575	313	7m at 3.28g/t Au	175	6	222
	WGU0249	7,198,812	636,575	313	2.54m at 6.64g/t Au	142	-1	252
	WGU0252	7,198,812	636,575	313	2.28m at 4.66g/t Au	17	-12	241
					3m at 3.19g/t Au	43	-12	241
	WGU0254A	7,198,812	636,575	313	4.67m at 5.32g/t Au	165	-21	288
	WGU0258	7,198,812	636,575	313	1.8m at 6.34g/t Au	74	-37	292

JORC 2012 TABLE 1 – GOLD DIVISION

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
`	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	Diamond Drilling A significant portion of the data used in resource calculations has been gathered from diamond core. Multiple sizes have been used historically. This core is geologically logged and subsequently halved for sampling. Grade control holes may be whole-cored to streamline the core handling process if required. Face Sampling At each of the major past and current underground producers, each development face / round is horizontally chip sampled. The sampling intervals are domained by geological constraints (e.g. rock type, veining and alteration / sulphidation etc.). The majority of exposures within the orebody are sampled. Sludge Drilling Sludge drilling at is performed with an underground production drill rig. It is an open hole drilling method using water as the flushing medium, with a 64mm (nominal) hole diameter. Sample intervals are ostensibly the length of the drill steel. Holes are drilled at sufficient angles to allow flushing of the hole with water following each interval to prevent contamination. Sludge drilling is not used to inform resource models. RC Drilling Drill cuttings are extracted from the RC return via cyclone. The underflow from each interval is transferred via bucket to a four tiered riffle splitter, delivering approximately three kilograms of the recovered material into calico bags for analysis. The residual material is retained on the ground near the hole. Composite samples are obtained from the residue material for initial analysis, with the split samples remaining with the individual residual piles until required for re-split analysis or eventual disposal. RAB / Aircore Drilling Combined scoops from bucket dumps from cyclone for composite. Split samples taken from individual bucket dumps via scoop. RAB holes are not included in the resource estimate. Blast Hole Drilling Cuttings sampled via splitter tray per individual drill rod. Blast holes not included in the
		resource estimate. All geology input is logged and validated by the relevant area geologists, incorporated into this is assessment of sample recovery. No defined relationship exists between sample recovery and grade. Nor has sample bias due to preferential loss or gain of fine or coarse material been noted.

Criteria	JORC Code Explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged 	veining, alteration, mineralisation and orientated structure. Westgold underground drill- holes are logged in detail for geology, veining, alteration, mineralisation and structure.

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Blast holes -Sampled via splitter tray per individual drill rods. RAB / AC chips - Combined scoops from bucket dumps from cyclone for composite. Split samples taken from individual bucket dumps via scoop. RC - Three tier riffle splitter (approximately 5kg sample). Samples generally dry. Face Chips - Nominally chipped horizontally across the face from left to right, sub-set via geological features as appropriate. Diamond Drilling - Half-core niche samples, sub-set via geological features as appropriate. Grade control holes may be whole-cored to streamline the core handling process if required. Chips / core chips undergo total preparation. Samples undergo fine pulverisation of the entire sample by an LM5 type mill to achieve a 75µ product prior to splitting. QA/QC is currently ensured during the sub-sampling stages process via the use of the systems of an independent NATA / ISO accredited laboratory contractor. A significant portion of the historical informing data has been processed by in-house laboratories. The sample size is considered appropriate for the grain size of the material being sampled. The un-sampled half of diamond core is retained for check sampling if required. For RC chips regular field duplicates are collected and analysed for significant variance to primary results.

Criteria JORC Code Explanation	Commentary
The nature, quality and appropriateness of the assaying and laboratory proused and whether the technique is considered partial or total. For geophysical tools, spectrometers, handhed XRF instruments, etc., the paraused in determining the analysis including instrument make and model, reading calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, dujexternal laboratory checks) and whether acceptable levels of accuracy (i.e. lack and precision have been established.	» A 40g sample undergoes fire assay lead collection followed by flame atomic adsorption spectrometry. » The laboratory includes a minimum of 1 project standard with every 22 samples analysed. Quality control is proposed via the year of standards blanks and dualicates.

Criteria	JORC Code Explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No independent or alternative verifications are available. Virtual twinned holes have been drilled in several instances across all sites with no significant issues highlighted. Drillhole data is also routinely confirmed by development assay data in the operating environment. Primary data is collected utilising LogChief. The information is imported into a SQL database server and verified. All data used in the calculation of resources and reserves are compiled in databases (underground and open pit) which are overseen and validated by senior geologists. No adjustments have been made to any assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	

Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	•	Data spacing is variable dependent upon the individual orebody under consideration. A lengthy history of mining has shown that this approach is appropriate for the Mineral Resource estimation process and to allow for classification of the resources as they stand. Compositing is carried out based upon the modal sample length of each individual domain.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 		Drilling intersections are nominally designed to be normal to the orebody as far as underground infrastructure constraints / topography allows. Development sampling is nominally undertaken normal to the various orebodies. Where drilling angles are sub optimal the number of samples per drill hole used in the estimation has been limited to reduce any potential bias. It is not considered that drilling orientation has introduced an appreciable sampling bias.
Sample security	The measures taken to ensure sample security.	•	For samples assayed at on-site laboratory facilities, samples are delivered to the facility by Company staff. Upon delivery the responsibility for sample security and storage falls to the independent third party operators of these facilities. For samples assayed off-site, samples are delivered to a third party transport service, who in turn relay them to the independent laboratory contractor. Samples are stored securely until they leave site.
Audits or reviews	The results of any audits or reviews of sampling techniques and data	•	Site generated resources and reserves and the parent geological data is routinely reviewed by the Westgold Corporate technical team.

SECTION 2 REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Native title interests are recorded against several WGX tenements. The CMGP tenements are held by the Big Bell Gold Operations (BBGO) of which Westgold has 100% ownership. Several third party royalties exist across various tenements at CMGP, over and above the state government royalty. The Fortnum Gold Project tenure is 100% owned by Westgold through subsidiary company Aragon Resources Pty. Ltd. Various Royalties apply to the package. The most pertinent being; \$10/oz after first 50,000oz (capped at \$2M)- Perilya State Government – 2.5% NSR The tenure is currently in good standing. There are no known issues regarding security of tenure. There are no known impediments to continued operation. WGX operates in accordance with all environmental conditions set down as conditions for grant of the leases.

Criteria	JORC Code Explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties	The CMGP tenements have an exploration and production history in excess of 100 years.
		The FGP tenements have an exploration and production history in excess of 30 years.
		Westgold work has generally confirmed the veracity of historic exploration data.
Geology	Deposit type, geological setting and style of mineralisation.	MGO
		MGO is located in the Achaean Murchison Province, a granite-greenstone terrane in the northwest of the Yilgarn Craton. Greenstone belts trending north-northeast are separated by granite-gneiss domes, with smaller granite plutons also present within or on the margins of the belts.
		The Paddy's Flat area is located on the western limb of a regional fold, the Polelle Syncline, within a sequence of mafic to ultramafic volcanics with minor interflow sediments and banded iron-formation. The sequence has also been intruded by felsic porphyry dykes prior to mineralisation. Mineralisation is located along four sub-parallel trends at Paddy's Flat which can be summarized as containing three dominant mineralisation styles:
		Sulphide replacement BIF hosted gold. Quartz vein hosted shear-related gold.
		Quartz-carbonate-sulphide stockwork vein and alteration related gold.
		 The Yaloginda area is a gold-bearing Archaean greenstone belt situated ~15km south of Meekatharra. The deposits in the area are hosted in a strained and metamorphosed volcanic sequence that consists primarily of ultramafic and high-magnesium basalt with minor komatiite, peridotite, gabbro, tholeiitic basalt and interflow sediments. The sequence was intruded by a variety of felsic porphyry and intermediate sills and dykes.
		The Reedy's mining district is located approximately 15 km to the south-east to Meekatharra and to the south of Lake Annean. The Reedy gold deposits occur with-in a north-south trending greenstone belt, two to five kilometres wide, composed of volcano-sedimentary sequences and separated multiphase syn- and post-tectonic granitoid complexes. Structurally controlled the gold occur.
		cgo
		CGO is located in the Achaean Murchison Province, a granite-greenstone terrane in the northwest of the Yilgarn Craton. Greenstone belts trending north-northeast are separated by granite-gneiss domes, with smaller granite plutons also present within or on the margins of the belts.
		 Mineralisation at Big Bell is hosted in the shear zone (Mine Sequence) and is associated with the post-peak metamorphic retrograde assemblages. Stibnite, native antimony and trace arsenopyrite are disseminated through the K-feldspar-rich lode schist. These are intergrown with pyrite and pyrrhotite and chalcopyrite. Mineralisation outside the typical Big Bell host rocks (KPSH), for example 1,600N and Shocker, also display a very strong W-As-Sb geochemical halo.
		Numerous gold deposits occur within the Cuddingwarra Project area, the majority of which are hosted within the central mafic-ultramafic ± felsic porphyry sequence. Within this broad framework, mineralisation is shown to be spatially controlled by competency contrasts across, and flexures along, layer-parallel D2 shear zones, and is maximised when transected by corridors of northeast striking D3 faults and fractures.
		The Great Fingall Dolerite hosts the majority gold mineralisation within the portion of the greenstone belt proximal to Cue (The Day Dawn Project Area). Unit AGF3 is the most brittle of all the five units and this characteristic is responsible for its role as the most favourable lithological host to gold mineralisation in the Greenstone Belt.

Criteria	JORC Code Explanation	Com	nmentary
		FGP	
			The Fortnum deposits are Paleoproterozoic shear-hosted gold deposits within the Fortnum Wedge, a localised thrust duplex of Narracoota Formation within the overlying Ravelstone Formation. Both stratigraphic formations comprise part of the Bryah Basin in the Capricorn Orogen, Western Australia.
			The Horseshoe Cassidy deposits are hosted within the Ravelstone Formation (siltstone and argillite) and Narracoota Formation (highly-altered, moderate to strongly deformed mafic to ultramafic rocks). The main zone of mineralisation is developed within a horizon of highly altered magnesian basalt. Gold mineralisation is associated with strong vein stock works that are confined to the altered mafic. Alteration consists of two types; stockwork proximal silica-carbonate-fuchsite-haematite-pyrite and distal silica-haematite-carbonate+/- chlorite.
			The Peak Hill district represents remnants of a Proterozoic fold belt comprising highly deformed trough and shelf sediments and mafic / ultramafic volcanics, which are generally moderately metamorphosed (except for the Peak Hill Metamorphic Suite).
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	•	No drillhole information is being presented in this release.
	» easting and northing of the drill hole collar		
	» elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar		
	» dip and azimuth of the hole		
	» down hole length and interception depth		
	» hole length.		
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.		
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	•	No drillhole information is being presented in this release.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.		
	The assumptions used for any reporting of metal equivalent values should be clearly stated.		
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	•	No drillhole information is being presented in this release.
mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.		
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').		

JORC Code Explanation	Commentary
Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	No drillhole information is being presented in this release.
Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	·
The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not	
	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main