

Quarterly Report for the period ending 30 September 2017

Highlights

- Group gold produced of 66,288 ounces. Average sale price achieved of A\$1,642/oz.
- Group EBITDA of \$30.51 million for the quarter (unaudited).
- Group Cash Costs of A\$1,062/oz.
- Group All-In Sustaining Costs A\$1,229/oz.
- Closing Cash & Working Capital A\$37 million.
- Fortnum Gold Project first full guarter produced 7,981 ounces from low grade ore with 187,467 tonnes @ 1.44 g/t processed achieving 91.6% recovery.
- Works commenced on Tuckabianna Gold Plant refurbishment with a commissioning target for end February 2018.
- Integration of 100% owned Australian Contract Mining Pty Ltd into operations progressing well.
- Mineral Resource and Ore Reserve update with a 26% increase in Ore Reserves to 46 million tonnes at 2.28 g/t Au containing 3.38 million ounces of gold and Mineral Resource estimate increased to 237 million tonnes at 2.09 g/t Au containing 15.96 million ounces. Full details released on 4 September 2017.
- Westgold released its inaugural annual report after seven months and three weeks as a separate public company with a gross profit of A\$31.46 million from an operating cash flow of A\$75.59 million. Shareholders received a 1 for 5 bonus option in lieu of a dividend.
- New thrust structures with bonanza gold grades discovered at Paddy's Flat including:
 - 4 m @ 434.80 g/t Au in hole 17VIDD160. »
 - 4 m @ 243.27 g/t Au in hole 17VIDD176. »

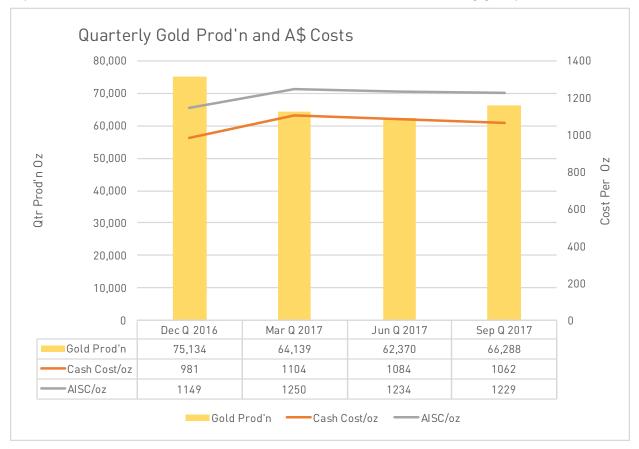
Enquiries

Peter Cook Managing Director peter.cook@westgold.com.au Steve Norregaard Director of Operations steve.norregaard@westgold.com.au rod.corps@westgold.com.au

Rod Corps Manager – Investor Relations

Westgold Resources Limited ACN 009 260 306

t: +61 8 9462 3400 | e: reception@westgold.com.au | w: www.westgold.com.au PO Box 7068 Cloisters Square, Perth 6850 | Level 6, 197 St Georges Tce, Perth WA 6000


Executive Summary

The September quarter continued the growth in overall gold production for the group with an increase of 6.3% over the previous quarter to 66,288 ounces at an all-in sustaining costs of A\$1,229 per ounce.

Cash operating costs (C1) were slightly lower than the previous quarter averaging A\$1,062 per ounce with all-in sustaining costs estimates (AISC) across the group averaging A\$1,229 per ounce.

The rolling 12-month output is 267,931 ounces at an AISC of A\$1,213 per ounce. The Company remains on track to fall within its annual guidance range of 310,000 – 340,000 ounces at an AISC of \$1,220 -\$1,280 per ounce.

The ensuing quarter is expected to demonstrate a continued ramp up of total gold output with the Tuckabianna Plant expected to commission in the March Quarter of 2018, further enhancing gold production.

Westgold completed engineering studies and planning to enable the commencement of refurbishment of the Tuckabianna Plant with completion anticipated during the March Quarter of 2018. Refurbishment cost and working capital requirements to achieve first gold production are estimated at \$16-\$18 million.

The integration of new wholly owned subsidiary, Australian Contract Mining Pty Ltd (ACM) progressed well during the period with operational rationalisation the key objective. The process of consolidation and upgrading of management, maintenance and accounting systems consistent with a public company subsidiary made substantial progress during the quarter.

Safety stats for the quarter are summarised below:

Site	LTI	LTIFR	TRIFR
Higginsville	0	1.6	61.4
South Kalgoorlie	0	6.4	67.7
СМСР	3	5.1	91.6
Fortnum	0	3.6	105.7

Physical and financial outputs for the group's gold operations for the quarter are summarised below:

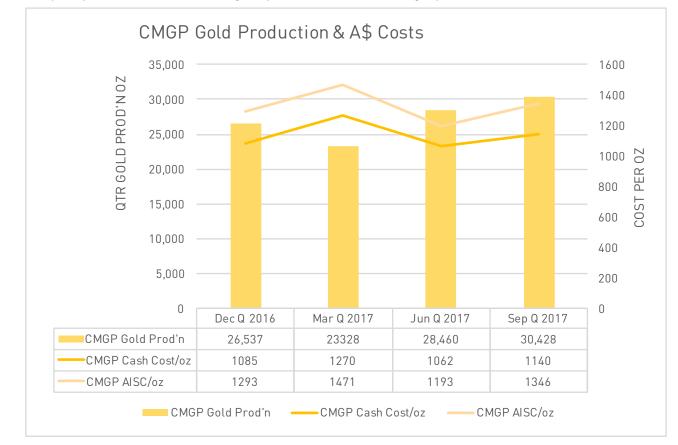
		Higginsville	South Kal	CMGP	Fortnum	Group
Physical Summary	Units					
ROM - UG Ore Mined	t	-	99,379	154,810	-	254,188
UG Grade Mined	g/t	-	2.97	4.06	-	3.63
ROM - OP BCM Mined	всм	835,036	374,897	1,111,122	675,975	2,997,030
OP Ore Mined	t	291,529	62,992	265,766	60,478	680,766
OP Grade Mined	g/t	1.91	1.92	1.77	1.43	1.81
Ores Processed (WGX only)	t	313,627	165,299	422,843	187,467	1,089,236
Head Grade	g/t	1.93	2.33	2.62	1.44	2.18
Recovery	%	85.13%	90.22%	85.40%	91.65	87.13%
Gold Produced	oz	16,589	11,290	30,428	7,981	66,288
Gold Sold	oz	15,069	9,018	27,168	7,266	58,520
Achieved Gold Price	A\$/oz	1,646	1,650	1,634	1658	1,642
Cost Summary						
Mining	A\$/oz	466	974	699	271	636
Processing	A\$/oz	575	45**	338	573	376
Admin	A\$/oz	155	51	152	253	147
Stockpile Adj	A\$/oz	(243)*	(95)	(49)	16	(98)
C1 Cash Cost (produced oz)	A\$/oz	953	976	1,140	1,113	1062
Royalties	A\$/oz	92	30	82	23	69
Marketing/Cost of sales	A\$/oz	2	1	1	1	1
Sustaining Capital	A\$/oz	48	99	117	28	86
Corporate Costs/Reclam., etc	A\$/oz	10	14	5	31	11
All-in Sustaining Costs	A\$/oz	1,104	1,121	1,346	1,197	1,229
Project Startup Capital	A\$'M	\$2.6m	\$1.9m	\$10.7m	\$8.8m	\$23.9m
Exploration & Holding Cost	A\$/oz	126	82	142	54	117
Depreciation & Amortisation	A\$/oz	256	406	371	194	327

* Some low-grade stockpiles were re-classified as high-grade.

** South Kal processing cost are net of toll processing credits.

Note: Financials are un-audited numbers.

Central Murchison Gold Project (CMGP)

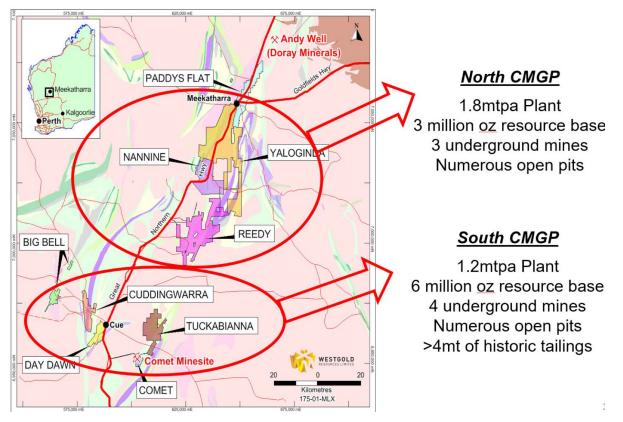

The CMGP continued its ramp up with gold produced increasing by 6.9% quarter-on-quarter to 30,428 ounces. Rolling 12-month output increased to 108,753 ounces at an AISC of A\$1,320 per ounce.

Minor plant modifications enabled plant throughput to increase by 17% over the previous quarter to 422,843 tonnes, but still a bit shy of the expected 1.8 million tpa rate. Further modifications are planned in the ensuing quarter.

A key driver of the increased output at CMGP was the 13% increase in underground average head grade to 4.06 g/t reflecting the increased component of stoping versus development ore during the quarter. During the ensuing quarter, Comet should transition to stoping and with that its overall gold output should increase further assisting the projects ramp-up.

Dewatering of the large Big Bell mine made significant progress with decline rehabilitation destined to commence in the ensuing quarter. Infrastructure and service works are nearing completion in readiness for the physical phase of mine recovery to commence. Big Bell is planned to be mined as a sub-level cave mine and will provide substantial long-term ore supply to the CMGP over a long period.

Open pit mining was completed at Jack Ryan and the Culliculli Open Pits but continues at Mickey Doolan. Preparations for small scale underground mining at Jack Ryan in conjunction with the South Emu-Triton mine will commence in the ensuing quarter with first results expected in the March Quarter 2018, both further enhancing CMGP gold output.


Quarterly output and 12 month rolling outputs for the CMGP are graphed and tabulated below:

The acquisition of the Tuckabianna Gold Plant and associated infrastructure is considered a game-changer for the maturing CMGP. Having now established and operated the Bluebird Plant in the northern region of the CMGP for the past 18 months, its long-term feedstocks are well defined and significantly exceed plant throughput.

The southern region of the CMGP has the bulk of the gold endowment of the CMGP. With the Big Bell mine now substantially dewatered and about to commence rehab and recovery processes, the path to substantially higher medium-term outputs from the southern region is fast approaching. The Big Bell mine alone is expected to produce in excess of 1 million tonnes per annum over an initial 8-10 year mine life.

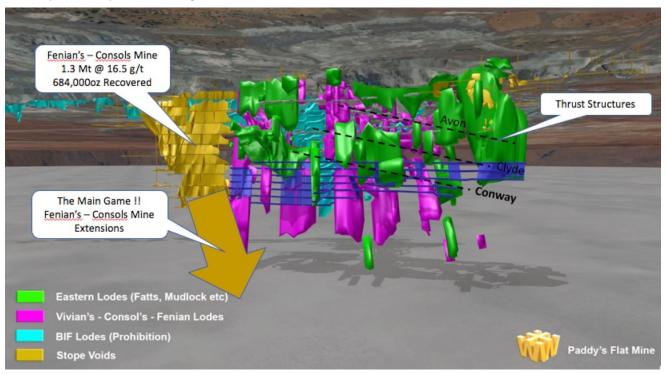
Having acquired the Tuckabianna Plant, the southern CMGP region has a plant that can essentially be filled with numerous ore sources remaining from historic tailings, lower grade open pit ores, the Comet Underground Mine and other sources whilst the Big Bell mine commences its production ramp up. However, in 2-3 years it is likely that the Big Bell mine will fill this plant with its current 1.2 mtpa capacity on its own.

Westgold substantially completed a revised development strategy for the CMGP during the quarter which is based around filling both process plants in the long term. The first step of this is the refurbishment and recommissioning of the Tuckabianna Plant for which all the engineering and schedules to bring it back into production were completed during the quarter and works have commenced. Detailed works have confirmed initial estimates of \$16-\$18 million in refurbishment and working capital cost to bring the plant back to production.

Westgold expects to release its revised development plan and strategy for the CMGP incorporating both process plants before the end or 2017.

CMGP Exploration and Development

Underground exploration at the Paddy's Flat underground mine has unveiled a new discovery of shallow-angle, high-grade thrust structures which have returned some truly world class drilling results at the northern end of the mine (refer to ASX announcement of 16 October 2017 for detail). The Avon Thrust, the first of these structures to be recognised and be exploited delivered standout results including:


- 2.95 m at 298.94 g/t Au from 51 m in 17VIDD164.
- 5.2 m at 91.06 g/t Au from 55 m in 17VIDD170.
- 4 m at 243.27 g/t Au from 61 m in 17VIDD176.
- 4 m at 434.8 g/t Au from 50 m in 17VIDD160.

In addition a hole targeting the third of these thrust positions to be identified, the Conway Thrust, returned 2 m at 171.57 g/t Au from 0 m in 17VIDD356.

At Reedy, Westgold has been busy establishing its next series of underground mines, which will replace the lower-grade open pit feed currently being blended through the Bluebird Process Plant.

Significant geological work concluded during the quarter at Jack Ryan, where portal establishment works are currently underway achieved results such as 18.3 m at 4.76g/t Au from 167 m in 17JRRC013 demonstrating the robust nature of the Jack Ryan lode below the existing open pit.

At the Triton – South Emu project, the second of the Reedy underground mines due to be developed, initial work was conducted expanding the resource footprint adjacent to and below the WMC's historic Triton mine, which from 1935 to 1948 produced 228,000 ounces (720,000 tonnes at 9.8 g/t recovered). Recent drilling, inclusive of the previously announced result of 2.7 m at 109.63 g/t Au from 729 m in 17RERD002 (See announcement of 7 September 2017), has provided significant confidence that the resource exploited in the old WMC mine remains open at depth and along-strike to the north.

A table of all significant (>5 gram x metres) drill results from the CMGP is attached in Appendix 1.

Fortnum Gold Project (FGP)

The Fortnum Plant had its first full operating quarter after the completion of wet commissioning at the end of the last quarter.

The plant operated on predominantly low-grade ore stocks during the quarter as operating and process flow bottlenecks were ironed out. Steady improvement was achieved during the quarter with the plant averaging 75% of expected steady-state throughput in its first full quarter.

Gold output was 7,981 ounces from the processing of 187,467 tonnes at 1.44 g/t with a metallurgical recovery of 91.65%. Cash costs (C1) averaged A\$1,113 per ounce and AISC were A\$1,197/oz for the quarter, significantly better than initial estimates at this phase of the project.

The real progress at Fortnum was achieved at the Starlight Underground mine. After reviews of its potential, a decision was made to bring this project forward in the development strategy. Initially, works for re-access to the Starlight underground mine were not planned to start until 2 years into the plan.

During the quarter, the dewatering and establishment of mining infrastructure and services significantly advanced. The underground is now approximately 2/3rds rehabilitated with ore driving on the remnant Twilight lodes in the ore system commencing at the end of the quarter.

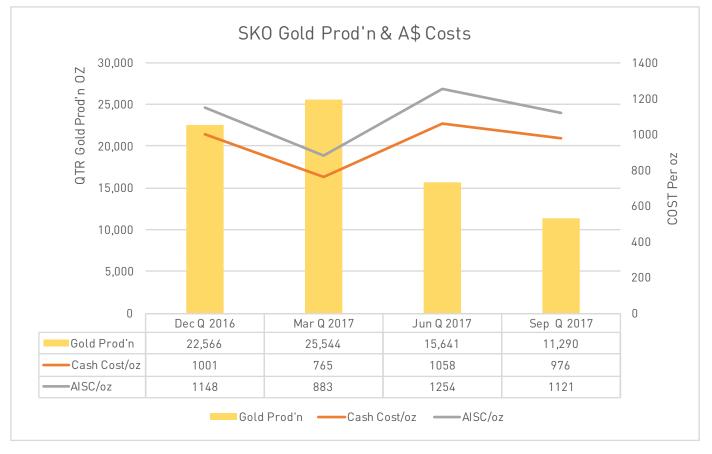
FGP Exploration and Development

A small resource development drilling program was conducted from drilling platforms established as the rehabilitation of the Starlight decline progressed. Pleasingly the restricted amount of holes able to be drilled have proved that the Starlight resource continues beyond the currently planned extents of mining.

Some of the better results returned from this initial program include 3.9 m at 19.86 g/t Au from 152.9 m in TRS_DH01 from the Trev's / Galaxy zone, and 5.3 m at 3.01 g/t Au from 127.0 m in WGU0006 and 5.8 m at 11.97 g/t Au from 157.8 m in WGU0012 from Starlight.

All significant (>5 gram x metres) drill results from the FGP is attached in Appendix 1.

South Kalgoorlie Operations (SKO)


The SKO entered the start of the year having allocated half of its plant throughput to RNC Minerals for toll processing of its Beta Hunt ores. This occurs on a 3-week on and 3-week off basis. SKO processed its own ores for six weeks during the quarter.

Gold ouput for this period was 11,290 ounces produced from the processing of 165,299 tonnes @ 2.33 g/t and a 90.2% recovery. Cash Cost (C1) were A\$976/oz and an AISC of A\$1,121/oz with toll processing credits attributed to plant operating costs. The rolling 12-month production for SKO is 75,041 ounces at an average AISC of A\$1,076/oz.

Mining continued at the HBJ underground mine which produced 99,379 tonnes @ 2.97 g/t.

Open pit mining progressed at Gunga and Bakers Flat with a combined production of 62,992 tonnes @ 1.92 g/t.

The open pit mining phase of the Cannon mining and profit share agreement was completed during the previous quarter. Southern Gold has completed some drilling which has outlined a modest resource beneath the pit and discussions are continuing about the joint exploitation of this resource.

SKO Exploration & Development

The SKO exploration team commenced the first in a series of conceptual exploration drilling programs driven by recent geophysics-based structural interpretation work including a series of targets in deeply oxidised rock in proximity to the Zuleika Fault. Tornado the first in a series of targets to be tested, has returned significant anomalism from early results. Some of the better values returned in the very limited results received to date include 12m at 1.23g/t Au from 28m in TOA036 and 8m at 1.83g/t Au from 36m in TOA037. It is anticipated that this round of drill testing will continue throughout the first half of the coming quarter, with three other high-priority conceptual targets approved for drilling during this initial phase of works.

At the HBJ underground mine, steady state resource definition activities have continued ahead of the mining front. Better results returned this quarter include 10.3m at 7.88g/t from 24m in HBJUG0410, 9.2m at 10.8g/t from 2m in HBJUG0411 and 4.89m at 15.84g/t from 16m in HBJUG0432. All of these results represent near-term production opportunities, which when combined with the recent commencement of works to access the northern ore zone (NOZ) mining area add a third production source to the north of the current mine footprint bode well for a robust year ahead for HBJ.

In addition, SKO is reviewing the potential to re-start the Mount Marion gold mine and develop the Mount Marion West gold deposit where it has retained full rights to access and excise land it requires to mine gold from within M15/717 (which was sold to Reed Industrial Minerals (RIM) in 2015 as part of an agreement to enable RIM to more efficiently exploit its Mount Marion Lithium deposits).

Mount Marion and Mount Marion West contains a significant total combined gold resource of 5.63 million tonnes at 3.4 g/t containing 614,320 ounces (refer to ASX:WGX 04/09/2017 for detail).

The main Mount Marion gold mine which closed in a lower gold price environment remains open down plunge. The Mount Marion West prospect represents a high grade mineral resource that could be converted to a large reserve in a reasonably short time period. Mineralisation has not been closed off effectively either along strike or at depth as a result of the wide spaced drilling. The greatest opportunity lies down plunge of the main Mount Marion lode where both the east and west lodes converge.

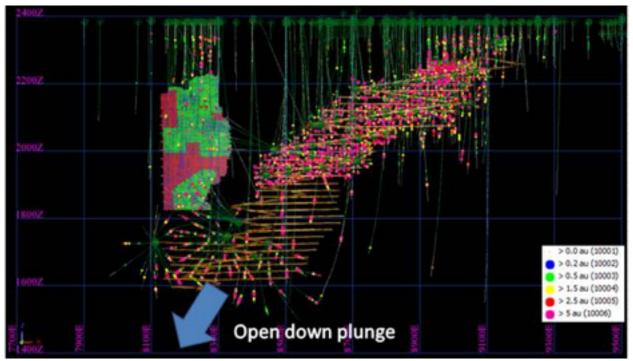
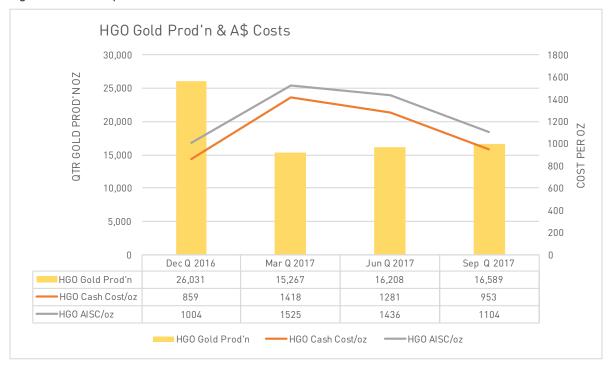



Figure: Drilling at Mount Marion and Mount Marion West. Resource blocks within the Mount Marion West stope design also shown (green = indicated; red = inferred).

Higginsville Gold Operations (HGO)

Mining at HGO continued with the main ore source being Mount Henry with minor ore sourced from the Fairplay area near the HGO process plant. A total of 291,529 tonnes of ore was mined at an average grade of 1.91 g/t.

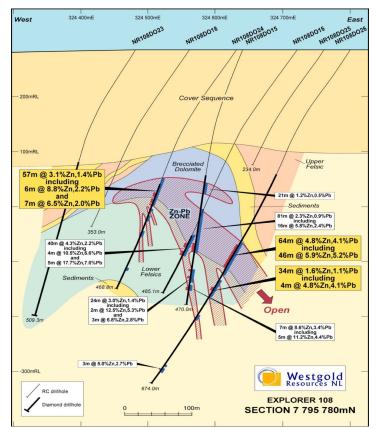
Gold output was 16,589 ounces from the processing of 313,627 tonnes at an average grade of 1.93 g/t at 85.13% recovery (as expected from the primary sulphide lodes). Plant availability has lower than expected with significant down time in the tertiary crushing circuit impacting throughput. Cash costs (C1) were A\$953/ oz for the quarter with an AISC of A\$1,104/oz.

The rolling 12month output for HGO was 74,095 ounces at an AISC of \$1,228/oz.

Higginsville Exploration & Development

At Higginsville, major resource definition drilling programs have been underway during the quarter in and around the Mount Henry area, and also closer to the Higginsville Processing Plant in the extensive palaeochannel gold system at Challenger.

At Mount Henry work has focused on the areas along strike to the north of the existing mining operation, and parallel to the current Mount Henry pit in the footwall BIF which was previously unable to be adequately drill tested due to the steep topography in the area. Some of the more significant results returned from this work include 18 m at 16.4 g/t Au from 14 m in MHRD0121, 21 m at 3.7 g/t Au from 27 m in MHRD0135 and 11 m at 2.78 g/t Au from 15 m in MHRD0203. Once incorporated into the next resource update for Mount Henry it is anticipated that these and associated results will result in an expansion of the current mine design.


Addition initial drilling programs have been undertaken in the Mount Henry host stratigraphy in the zone between Mount Henry and the large Selene deposit 4 km to the south. Better results obtained from this yet to be completed phase of work include 4 m at 14.7 g/t Au from 38 m in MHRD0453 at Birthday Gift and 17 m at 2.35 g/t Au from 11 m at MHRD0319 at Magnet Ann. Completion of the initial phase of work is scheduled for the upcoming quarter as rig availability allows.

At Mitchell the continuation of high-grade palaeochannel mineralisation has been confirmed by results such as 2 m at 9.78 g/t Au from 17 m in MITA0197 and 3 m at 7.84 g/t Au from 15 m in MITA0205. Continued development work at Mitchell is expected to result in an extension to the existing pit, as well as several satellite pits along both the northern and southern strike extensions to the palaeochannel system.

Rover Project

No field activity occurred at the Rover Project during the quarter, however, reviews of the base metal potential of the project were undertaken. Rover remains an undeveloped high-grade IOCG deposit with a polymetallic assemblage (mainly copper-gold) and a Total Resource Estimate of 6.81 million tonnes at 1.73 g/t Au, 1.2% Cu, 0.14% Bi and 0.06% Co (refer to ASX:WGX 04/09/2017 for detail).

The current total mineral resource of the Explorer 108 Prospect is 11.87 million tonnes at 2.0% Pb, 3.24% Zn, 0.36% Cu and 11.1 g/t Ag. The deepest and last hole drilled into the Explorer 108 system was NR108D026 which returned 46 metres at 5.9% Zn, 5.2% Pb and 53 g/t Ag. Exploration was curtailed due to falling lead and zinc prices at the time. Although a non-core asset, the project is again under review as metal prices have recovered.

In addition, the Curiosity Prospect, approximately 1 km south of Explorer 108 had a wildcat hole drilled into the anomaly which returned strong polymetallic mineralisation (mainly lead-zinc), including 11.7 m @ 4.86% Zn, 3.73% Pb, 0.24% Cu, 33 g/t Ag, 1.02 g/t Au in hole MXCURD002 (Refer to announcement ASX:MLX 22/12/2014).

Lithium Interests

Westgold holds significant interests in Lithium in the Eastern Goldfields. At Mount Marion, Westgold has leased a 30 hectare area of its Location 53 freehold lands to Reed Industrial Minerals Pty Ltd which contains a substantial extension of the Mount Marion Lithium Deposit. Westgold through its wholly owned subsidiaries is entitled to an annual rental of \$3,000 per hectatre indexed to CPI, a \$2 per tonne royalty of any ore mined and processed from the leased area and a royalty of 1.5% of gross sales revenue from the area.

In addition, Westgold through another wholly owned subsidiary has a \$2/t royalty of ore mined and milled and a royalty of 1.5% of gross sales revenue from mining on 55 sq. kilometres of mining titles at Buldania near Norseman where it has given lithium exploration and exploitation rights to Liontown Resources Ltd. Liontown has announced the discovery of widespread lithium mineralisation on the tenure and continues with its exploration.

Westgold is currently evaluating the whole of its Lithium potential within its extensive freehold and leasehold lands in the Kalgoorlie –Norseman belts. As these interests currently have no dedicated exploration budget and are likely to have future revenues from royalty income, the company is considering a potential spin-off of lithium rights into a special purpose vehicle.

Corporate

Westgold closed the quarter with 320,811,020 shares on issue.

The company issued 64,099,433 options convertible at A2.00 per share on or before 30 June 2019 to shareholders on a 1 for 5 basis in lieu of a dividend as a reward for shareholder support in the inaugural $7\frac{1}{2}$ months since it listed as a separate public company.

The Company closed the quarter with net cash and working capital of \$37 million dollars.

The Company's hedge book currently stands at 118,750 ounces at an average delivery price of A\$1,645.73 per ounce with a tenure out to September 2018.

In addition, the Company has a gold prepay of 22,500 ounces amortising at 1,250 per month until March 2019 at an average price of A\$1,606.70 per ounce.

APPENDIX 1 – TABLES OF DRILL RESULTS CENTRAL MURCHISON GOLD PROJECT UNDERGROUND DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Prohibition	17PRDD221	7,056,500	649,909	283	NSI		3	126
	17PRDD222	7,056,500	649,910	283	2.9m at 4.75g/t Au	7	3	88
					4.35m at 2.74g/t Au	14		
					12.76m at 3.82g/t Au	32		
	17PRDD223	7,056,501	649,910	283	2.25m at 3.62g/t Au	12	2	55
					6m at 1.6g/t Au	23		
					7m at 1.66g/t Au	35		
	17PRDD054	7,056,551	649,932	336	4m at 2.71g/t Au	0	44	288
					7.65m at 3.83g/t Au	6		
					2m at 3.88g/t Au	18		
					8.22m at 5.02g/t Au	21		
					3.07m at 3.67g/t Au	31		
					4m at 2.71g/t Au	38		
					14.5m at 4.61g/t Au	45		
					8.39m at 3.32g/t Au	62		
	17PRDD055	7,056,565	649,935	338	2.72m at 9.05g/t Au	0	60	287
					2m at 5.39g/t Au	13		
					5.38m at 3.71g/t Au	26		
	17PRDD056	7,056,577	649,938	338	1.37m at 6.54g/t Au	23	69	348
					3m at 7.96g/t Au	34		
					1.74m at 4.26g/t Au	44		
					1.07m at 12.73g/t Au	59		
	17PRDD148	7,056,484	649,931	334	3.05m at 2.97g/t Au	4	-46	108
	17PRDD149	7,056,492	649,938	335	0.9m at 6.22g/t Au	9	32	107
	17PRDD271	7,056,492	649,881	311	2.35m at 4.1g/t Au	10	33	282
					5m at 2.66g/t Au	16		
	17PRDD272	7,056,474	649,875	310	3.16m at 2.89g/t Au	4	25	288
					3m at 4.68g/t Au	9		
					2m at 3.61g/t Au	13		
					2.62m at 5.31g/t Au	16		
					2m at 4.75g/t Au	22		
					4.3m at 7.68g/t Au	25		
					0.9m at 6.64g/t Au	30		

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Prohibition	17PRDD273	7,056,474	649,877	313	5m at 3.99g/t Au	4	67	288
					2.62m at 7.81g/t Au	9		
					1.9m at 3.45g/t Au	13		
					1.2m at 6.51g/t Au	19		
	17PRDD278	7,056,387	649,850	285	2m at 3.2g/t Au	0	47	287
					4.25m at 2.31g/t Au	5		
					2.4m at 9.22g/t Au	10		
					3m at 3.22g/t Au	13		
					3.3m at 5.23g/t Au	21		
	17PRDD279	7,056,388	649,850	283	3.5m at 2.96g/t Au	5	25	287
					6m at 7.58g/t Au	16		
	17PRDD280	7,056,398	649,852	284	5m at 4.08g/t Au	11	35	288
					4.4m at 5.45g/t Au	17		
	17PRDD281	7,056,408	649,851	285	2m at 4.64g/t Au	15	53	287
					1.76m at 3.86g/t Au	19		
	17PRDD282	7,056,409	649,850	283	4m at 3.21g/t Au	8	29	288
					3.33m at 20.99g/t Au	15		
				Inc.	1m at 55.79g/t Au	16		
	17PRDD283	7,056,420	649,851	286	2.5m at 3.28g/t Au	16	49	288
	17PRDD284	7,056,420	649,850	283	2.65m at 3.79g/t Au	9	11	287
					3m at 5.82g/t Au	15		
	17PRDD285	7,056,429	649,851	285	4.55m at 2.3g/t Au	0	30	287
					10.3m at 12.54g/t Au	7		
	17PRDD286	7,056,429	649,852	286	5.47m at 12.49g/t Au	11	54	288
	17PRDD287	7,056,439	649,855	286	4m at 11.38g/t Au	0	54	288
					0.3m at 17.1g/t Au	13		
					6m at 1.79g/t Au	17		
	17PRDD296	7,056,552	649,947	313	2.65m at 9.2g/t Au	6	36	309
					2.23m at 3.54g/t Au	10		
					1.62m at 3.74g/t Au	18		
	17PRDD297	7,056,539	649,941	313	13.9m at 7.77g/t Au	0	31	316
					4.34m at 5.84g/t Au	16		

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Prohibition	17PRDD298	7,056,534	649,938	312	3m at 2.27g/t Au	0	26	288
					7.41m at 8.18g/t Au	4		
					2.83m at 5.43g/t Au	12		
					1m at 6.24g/t Au	23		
	17PRDD299	7,056,529	649,916	314	2m at 4.1g/t Au	15	58	288
	17PRDD301	7,056,520	649,914	312	1.07m at 18.95g/t Au	9	29	316
	17PRDD209	7,056,322	649,810	258	NSI		-31	108
	17PRDD239	7,056,264	649,794	258	0.74m at 7.75g/t Au	9	-77	107
					2.94m at 4.13g/t Au	102		
					0.8m at 9.49g/t Au	104		
					2.04m at 3.24g/t Au	153		
	17PRDD240	7,056,264	649,794	258	2.2m at 2.54g/t Au	202	-70	108
	17PRDD241	7,056,264	649,794	258	2m at 13.73g/t Au	5	-60	108
	17PRDD242	7,056,264	649,794	258	NSI		-55	178
	17PRDD243	7,056,398	649,991	312	1.59m at 8.73g/t Au	111	-8	307
					3m at 1.75g/t Au	122		
					3.22m at 5.13g/t Au	126		
	17PRDD244	7,056,398	649,991	312	0.71m at 7.5g/t Au	118	-7	319
					5.35m at 3.47g/t Au	123		
	17PRDD260	7,056,397	649,991	312	4.47m at 7.37g/t Au	117	-9	267
					2.68m at 10.91g/t Au	136		
					3.34m at 4.56g/t Au	143		
					8.34m at 3.97g/t Au	156		
	17PRDD269	7,056,512	649,892	314	2.45m at 4.5g/t Au	18	47	229
	17PRDD276	7,056,453	649,877	284	3m at 3.44g/t Au	3	32	288
					8.67m at 2.56g/t Au	8		
	17PRDD277	7,056,432	649,874	284	4m at 3.25g/t Au	5	30	301
					5.77m at 2.51g/t Au	13		
					2.5m at 18.47g/t Au	20		
					2.87m at 7.83g/t Au	24		
					1.68m at 15.54g/t Au	32		
					1m at 5.26g/t Au	34		
					2.95m at 4.29g/t Au	37		

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Prohibition	17PRDD288	7,056,468	649,897	284	4m at 2.47g/t Au	11	40	286
					2.8m at 4.75g/t Au	16		
					2.4m at 4g/t Au	27		
	17PRDD289	7,056,468	649,897	283	NSI		21	288
	17PRDD290	7,056,478	649,898	284	NSI		40	288
	17PRDD291	7,056,478	649,898	283	NSI		18	288
	17PRDD293	7,056,496	649,904	286	1.9m at 3.69g/t Au	31	59	289
	17PRDD294	7,056,506	649,908	286	1.6m at 5.37g/t Au	22	67	288
	17PRDD303A	7,056,515	649,893	314	3.15m at 8.67g/t Au	17	64	288
					2m at 6.35g/t Au	21		
	17PRDD370	7,056,331	649,763	318	1m at 38g/t Au	12	1	277
	17PRDD371	7,056,315	649,763	319	2.36m at 6.89g/t Au	13	11	280
	17PRDD374	7,056,271	649,769	319	4.15m at 1.97g/t Au	2	2	241
					1.3m at 36.12g/t Au	64		
					2.5m at 5.12g/t Au	68		
Vivian- Consols	17VIDD110	7,056,010	650,160	332	8.1m at 1.6g/t Au	68	-44	359
					4m at 2.43g/t Au	106		
					13m at 3.18g/t Au	116		
	17VIDD112	7,056,010	650,160	332	15m at 2.66g/t Au	111	-50	4
					3.7m at 2.05g/t Au	134		
					2m at 8.44g/t Au	233		
	17VIDD113	7,056,010	650,160	332	1.77m at 3.08g/t Au	71	-56	4
					4m at 1.5g/t Au	105		
					8m at 2.9g/t Au	126		
	17VIDD114	7,056,010	650,160	332	30m at 2.17g/t Au	126	-52	8
					5.23m at 4.22g/t Au	81		
					2m at 2.68g/t Au	98		
					2m at 19.32g/t Au	173		
	17VIDD145	7,056,473	650,307	323	9m at 7.41g/t Au	75	-15	105
	17VIDD146	7,056,473	650,307	323	1m at 13.7g/t Au	1	-13	96
					9m at 3.51g/t Au	92		

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Vivian- Consols	17VIDD147	7,056,473	650,307	322	0.47m at 13.7g/t Au	5	-19	94
					4.8m at 3.82g/t Au	108		
	17VIDD158	7,056,454	650,374	324	5m at 11.88g/t Au	0	-10	288
	17VIDD163	7,056,455	650,376	323	4m at 7.39g/t Au	0	-33	324
	17VIDD164	7,056,455	650,376	323	5m at 3.77g/t Au	1	-28	332
					2.95m at 298.94g/t Au	51		
	17VIDD170	7,056,456	650,376	323	3m at 10.55g/t Au	1	-36	350
					5.2m at 91.06g/t Au	55		
	17VIDD171	7,056,455	650,376	323	5m at 3.38g/t Au	0	-31	350
					7.3m at 22.24g/t Au	65		
	17VIDD174	7,056,455	650,376	324	5m at 4.3g/t Au	0	-21	345
	17VIDD176	7,056,465	650,390	323	4m at 243.27g/t Au	61	-44	349
	17VIDD177	7,056,465	650,390	324	3.5m at 71.26g/t Au	68	-37	348
	17VIDD178	7,056,465	650,390	323	1m at 5.33g/t Au	68	-29	346
	17VIDD180	7,056,465	650,390	323	4m at 5.55g/t Au	1	-23	346
					1m at 16.67g/t Au	83		
					5m at 7.97g/t Au	92		
	17VIDD138	7,056,473	650,307	324	2.42m at 44.39g/t Au	58	13	111
					1m at 14.7g/t Au	61		
					2.5m at 6.07g/t Au	121		
	17VIDD139	7,056,473	650,307	324	5m at 14.81g/t Au	69	16	96
					2.25m at 3.45g/t Au	79		
	17VIDD143	7,056,473	650,307	323	7m at 4.72g/t Au	105	-7	90
	17VIDD155	7,056,475	650,301	342	2m at 3.93g/t Au	34	-27	38
					2m at 5.54g/t Au	97		
	17VIDD159	7,056,455	650,375	324	2m at 10.65g/t Au	0	-18	297
					0.97m at 9.86g/t Au	60		
	17VIDD160	7,056,454	650,375	324	5m at 21.26g/t Au	0	-14	304
					4m at 434.8g/t Au	50		

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Vivian- Consols	17VIDD161	7,056,454	650,375	324	3.7m at 14.38g/t Au	0	-8	310
					2m at 6.69g/t Au	54		
					1m at 15.6g/t Au	58		
					2m at 12.6g/t Au	61		
					2m at 8.16g/t Au	64		
	17VIDD162	7,056,454	650,375	324	2m at 19.75g/t Au	1	-11	318
					0.6m at 28.8g/t Au	4		
					0.9m at 158g/t Au	51		
					1.6m at 8.59g/t Au	53		
					0.8m at 6.68g/t Au	56		
	17VIDD165	7,056,455	650,376	323	5m at 2.26g/t Au	0	-24	335
					1m at 5.79g/t Au	55		
					3.1m at 4.26g/t Au	57		
					0.5m at 30g/t Au	63		
	17VIDD166	7,056,456	650,376	324	2m at 3.17g/t Au	3	-21	336
	17VIDD167	7,056,455	650,376	324	1m at 13.2g/t Au	0	-19	336
					1.8m at 3.61g/t Au	3		
	17VIDD168	7,056,455	650,376	324	1m at 6.84g/t Au	0	-15	336
					2m at 7.86g/t Au	3		
					1m at 19.2g/t Au	6		
	17VIDD172	7,056,456	650,376	323	5m at 1.88g/t Au	0	-28	349
					2.03m at 13.27g/t Au	70		
	17VIDD173	7,056,456	650,376	324	2m at 3.21g/t Au	0	-25	347
					2m at 3.03g/t Au	3		
					0.92m at 163.61g/t Au	74		
	17VIDD179	7,056,465	650,390	323	2m at 6.51g/t Au	1	-26	347
					1.4m at 24.17g/t Au	97		
	17VIDD245	7,056,424	650,283	281	1.5m at 66.47g/t Au	1	-89	48
					2.7m at 18.32g/t Au	36		
					1m at 18.95g/t Au	41		
	17VIDD246	7,056,411	650,270	281	0.73m at 25.43g/t Au	37	-72	357
	17VIDD250	7,056,409	650,283	281	1m at 7.61g/t Au	36	-81	182

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Vivian- Consols	17VIDD251	7,056,398	650,255	281	1m at 9.43g/t Au	0	-77	143
					1m at 8.56g/t Au	9		
	17VIDD253	7,056,405	650,258	281	0.55m at 149.26g/t Au	17	-47	359
	17VIDD322	7,056,382	650,245	280	1.12m at 17.73g/t Au	7	-70	97
	17VIDD323	7,056,383	650,242	281	0.61m at 115.7g/t Au	1	-23	245
					2m at 4.54g/t Au	6		
					5.08m at 12.18g/t Au	13		
					1.58m at 31.21g/t Au	22		
	17VIDD130	7,055,886	649,808	406	4.4m at 1.52g/t Au	27	46	138
	17VIDD131	7,055,885	649,808	404	1.7m at 3.45g/t Au	21	14	138
	17VIDD132	7,055,885	649,808	402	3.16m at 9.48g/t Au	56	-34	138
	17VIDD133	7,055,883	649,807	403	1.65m at 3.23g/t Au	46	2	174
	17VIDD134	7,055,883	649,807	403	3.2m at 8.04g/t Au	58	-23	166
	17VIDD156	7,056,423	650,277	282	1.5m at 7.14g/t Au	84	-35	200
					1.1m at 14.28g/t Au	129		
					1m at 5.92g/t Au	131		
					1.9m at 6.08g/t Au	203		
					0.3m at 40.1g/t Au	224		
	17VIDD225	7,055,924	649,830	406	0.4m at 34g/t Au	17	19	109
	17VIDD227	7,055,906	649,819	404	5.1m at 3.29g/t Au	18	16	110
	17VIDD324	7,056,280	650,161	279	1m at 13.03g/t Au	5	-79	125
					3m at 2.49g/t Au	8		
					2m at 4.79g/t Au	38		
					0.55m at 64.5g/t Au	41		
					0.25m at 113g/t Au	43		
					0.4m at 296.89g/t Au	49		
					3m at 2.04g/t Au	53		
					1m at 17.35g/t Au	61		
	17VIDD325	7,056,280	650,161	279	1m at 9.55g/t Au	6	-64	123
					3m at 8.56g/t Au	19		
					3m at 2.16g/t Au	22		
					0.78m at 33.2g/t Au	37		

UNDERGROUND DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Vivian- Consols	17VIDD355	7,056,258	650,149	280	1m at 7.06g/t Au	0	-80	209
					1m at 7.7g/t Au	10		
					1m at 31.8g/t Au	43		
	17VIDD356	7,056,258	650,149	280	2m at 171.57g/t Au	0	-59	234
					2m at 7.48g/t Au	14		
					1m at 20.5g/t Au	48		
	17VIDD357	7,056,288	650,163	279	1m at 12.6g/t Au	6	-69	193
					1.99m at 13.36g/t Au	26		
					3m at 6.58g/t Au	42		
					0.94m at 14.6g/t Au	50		
	17VIDD358	7,056,289	650,140	245	NSI		-5	171
	17VIDD359	7,056,290	650,141	244	2m at 19.67g/t Au	31	-23	133
					1m at 20.5g/t Au	48		
	17VIDD357	7,056,288	650,163	279	1m at 12.6g/t Au	6	-69	193
					1.99m at 13.36g/t Au	26		
					3m at 6.58g/t Au	42		
					0.94m at 14.6g/t Au	50		
	17VIDD358	7,056,289	650,140	245	NSI		-5	171
	17VIDD359	7,056,290	650,141	244	2m at 19.67g/t Au	31	-23	133

RESOURCE DEVELOPMENT DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Aladdin	17ADRC004	7,027,176	633,805	440	3m at 3.08g/t Au	4	-90	000.0
	17ADRC006	7,027,194	633,796	440	5m at 1.17g/t Au	19	-90	000.0
	17ADRC007	7,027,189	633,805	440	3m at 2.29g/t Au	15	-90	000.0
	17ADRC008	7,027,202	633,801	440	5m at 1.27g/t Au	11	-90	000.0
					6m at 1.79g/t Au	22		
	17ADRC010	7,027,215	633,799	440	3m at 2.98g/t Au	0	-90	000.0
	17ADRC011	7,027,201	633,823	442	6m at 3.35g/t Au	1	-90	000.0
	17ADRC012	7,027,222	633,798	439	4m at 1.65g/t Au	14	-90	000.0
	17CDRD003	6,970,582	579,521	420	1m at 6.9g/t Au	312	-52	270.0
Boomerang	17BMDD002	7,007,962	627,646	458	4m at 4.51g/t Au	300	-82	098.9
					5.8m at 3g/t Au	397		

CENTRAL MURCHISON GOLD PROJECT (CONTINUED) RESOURCE DEVELOPMENT DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Boomerang					5.9m at 2.72g/t Au	407		
					9.4m at 3.65g/t Au	426		
					1.3m at 4.26g/t Au	439		
	17BMDD003	7,008,085	627,638	458	4.9m at 11.81g/t Au	274	-75	097.5
					4.5m at 9.31g/t Au	285		
					6.3m at 2.84g/t Au	319		
					4m at 2.02g/t Au	328		
Gibraltar South	17GBRC001	7,047,905	642,759	486	11m at 3.87g/t Au	35	-55	289.6
	17GBRC001	7,047,905	642,759	486	4m at 4.66g/t Au	51	-55	289.6
	17GBRC005	7,047,850	642,763	485	5m at 3.07g/t Au	28	-60	289.6
Jack Ryan	17JRRC010	7,002,329	626,860	472	18m at 1.99g/t Au	150	-50	189
	17JRRC011	7,002,329	626,845	472	5m at 4.28g/t Au	156	-50	189
	17JRRC012	7,002,337	626,801	472	5m at 1.91g/t Au	147	-55	139
	17JRRC013	7,002,341	626,781	472	18.3m at 4.76g/t Au	167	-54	154
	17JRRC015	7,002,348	626,765	472	7m at 1.15g/t Au	167	-59	114.0
					8m at 2g/t Au	175		
					4m at 1.64g/t Au	186		
	17JRRC016	7,002,346	626,777	472	14m at 3.69g/t Au	162	-57	114.0
	17JRRC017	7,002,345	626,783	472	8m at 2.03g/t Au	157	-54	124.0
	17JRRC020	7,002,357	626,772	472	9m at 1.72g/t Au	178	-60	099.0
Mickey Doolan	17MDRC001	7,055,057	649,695	470	8m at 2.09g/t Au	24	-60	287.7
					4m at 1.45g/t Au	52		
					7m at 2.87g/t Au	67		
	17MDRC003	7,055,032	649,710	470	4m at 1.35g/t Au	69	-60	287.7
					7m at 1.27g/t Au	78		
					3m at 26.57g/t Au	100		
					5m at 1.33g/t Au	125		
	17MDRC004	7,055,017	649,688	470	3m at 1.98g/t Au	51	-60	287.7
					11m at 1.92g/t Au	67		
					14m at 1.95g/t Au	95		

CENTRAL MURCHISON GOLD PROJECT (CONTINUED) RESOURCE DEVELOPMENT DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Mickey Doolan	17MDRC005	7,054,997	649,687	470	6m at 1.62g/t Au	73	-60	287.7
					5m at 1.51g/t Au	89		
					9m at 1.31g/t Au	108		
					3m at 1.68g/t Au	123		
	17MDRC008	7,054,971	649,672	470	6m at 2.98g/t Au	18	-55	287.7
					5m at 1.05g/t Au	46		
	17MDRC009	7,054,962	649,667	470	5m at 1.08g/t Au	6	-60	287.7
					5m at 1.81g/t Au	13		
					3m at 2.47g/t Au	55		
	17MDRC010	7,054,957	649,681	470	4m at 1.63g/t Au	55	-60	287.7
					6m at 3.89g/t Au	71		
					6m at 1.4g/t Au	82		
	17SBGC001	7,067,491	646,112	495	1m at 5.62g/t Au	6	-60	118.5
	17SBGC003	7,067,492	646,089	495	2m at 2.53g/t Au	16	-60	118.5
	17SBGC003	7,067,492	646,089	495	6m at 2.72g/t Au	22	-60	118.5
	17SBGC005	7,067,484	646,082	495	9m at 2.01g/t Au	21	-60	118.5
	17SBGC014	7,067,443	646,054	495	1m at 7.22g/t Au	36	-60	118.5
	17SBGC018	7,067,404	646,084	496	6m at 1.68g/t Au	9	-60	118.5
	17SBGC027	7,067,398	646,032	496	6m at 3.82g/t Au	17	-60	118.5
	17SBGC028	7,067,368	646,066	496	2m at 5.68g/t Au	7	-60	118.5
	17SBGC029	7,067,390	646,027	496	5m at 2.21g/t Au	21	-60	118.5
	17SBGC031	7,067,365	646,051	496	2m at 5.42g/t Au	23	-60	118.5
	17SBGC031	7,067,365	646,051	496	5m at 1.73g/t Au	28	-60	118.5
	17SBGC033	7,067,358	646,043	496	9m at 5.92g/t Au	24	-60	118.5
	17SBGC035	7,067,343	646,042	497	8m at 2.6g/t Au	15	-60	073.5
	17SBGC036	7,067,351	646,035	496	7m at 2.71g/t Au	29	-90	028.5
	17SBGC044	7,067,322	646,025	497	4m at 4.65g/t Au	14	-90	028.5
	17SBGC047	7,067,297	645,988	496	5m at 6.51g/t Au	30	-90	028.5
	17SBGC049	7,067,269	645,973	496	4m at 4.58g/t Au	10	-90	028.5
	17SBGC051	7,067,267	645,958	496	3m at 2.39g/t Au	15	-90	028.5
	17SBGC052	7,067,257	645,959	497	4m at 6.27g/t Au	6	-90	028.5
	17SBGC053	7,067,225	645,931	496	3m at 3.32g/t Au	16	-90	028.5
	17SBGC053	7,067,225	645,931	496	3m at 2.61g/t Au	22	-90	028.5

CENTRAL MURCHISON GOLD PROJECT (CONTINUED) RESOURCE DEVELOPMENT DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Three Sisters	17TSRC001	7,025,642	634,438	447	6m at 1.03g/t Au	21	-60	124.0
	17TSRC002	7,025,660	634,447	447	1m at 8.7g/t Au	23	-60	124.0
	17TSRC008	7,025,715	634,473	446	4m at 2.99g/t Au	23	-60	124.0
	17TSRC009	7,025,736	634,478	445	8m at 2g/t Au	26	-60	124.0
	17TSRC017	7,025,850	634,559	443	4m at 2.34g/t Au	18	-60	124.0
Triton	17RERD001A	6,998,282	625,864	496	3.5m at 1.59g/t Au	610	-77	279.0
					7.1m at 2.87g/t Au	676		
					9m at 5.39g/t Au	697		
					4.2m at 2.1g/t Au	713		
	17RERD002	6,998,176	625,847	496	4m at 2.86g/t Au	606	-77	279
					3.4m at 1.51g/t Au	613		
					8.9m at 4.63g/t Au	666		
					4.3m at 1.24g/t Au	685		
					2.3m at 6.56g/t Au	701		
					1m at 9.46g/t Au	714		
					2.7m at 109.63g/t Au	729		

CENTRAL MURCHISON GOLD PROJECT (CONTINUED) **EXPLORATION DRILLING RESULTS**

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Golden Shamrock	17GSRC015	7,026,472	632,581	456	4m at 1.53g/t Au	3	-60	284
	17GSRC016	7,026,469	632,590	457	1m at 12.1g/t Au	4	-60	284
	17GSRC017	7,026,467	632,601	457	3m at 1.66g/t Au	2	-60	284
	17GSRC018	7,026,465	632,610	457	10m at 2.4g/t Au	1	-60	284
	17GSRC019	7,026,462	632,621	457	3m at 2.29g/t Au	6	-60	284
	17GSRC020	7,026,460	632,629	457	12m at 2.05g/t Au	17	-60	284
	17GSRC022	7,026,456	632,649	457	3m at 1.62g/t Au	17	-60	284
	17GSRC023	7,026,493	632,605	457	5m at 23.39g/t Au	1	-60	284
	17GSRC025	7,026,483	632,620	457	5m at 3.57g/t Au	1	-60	284
	17GSRC026	7,026,480	632,631	457	4m at 9.77g/t Au	6	-60	284
	17GSRC029	7,026,445	632,610	456	2m at 2.8g/t Au	8	-60	283
	17GSRC030	7,026,442	632,620	456	2m at 6.4g/t Au	10	-60	283

CENTRAL MURCHISON GOLD PROJECT (CONTINUED) EXPLORATION DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Golden Shamrock	17GSRC031	7,026,439	632,629	456	2m at 14.52g/t Au	13	-60	283
	17GSRC032	7,026,437	632,638	456	4m at 1.34g/t Au	14	-60	283
	17GSRC033	7,026,434	632,648	456	1m at 17.4g/t Au	18	-60	283
Ingliston	17INRD001	7,056,611	650,549	520	4m at 1.59g/t Au	0	-57	287
					3m at 3.96g/t Au	100		
					4m at 2.97g/t Au	108		
	17INRD003	7,056,683	650,588	520	7m at 1.48g/t Au	82	-60	287
	17INRD004	7,056,712	650,605	520	4m at 1.21g/t Au	84	-58	291

SOUTH KALGOORLIE OPERATIONS UNDERGROUND DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
HBJ_UG	HBJUG0227	366,576	6,566,433	29	2.4m at 2.63g/t	7	7	347
					3.41m at 2.94g/t	22		
					1.5m at 3.41g/t	31		
					4m at 1.88g/t	54		
					4.5m at 2.85g/t	63		
					14.8m at 1.71g/t	72		
					1.3m at 4.92g/t	110		
	HBJUG0228	366,584	6,566,438	29	11.51m at 2.86g/t	52	7	348
					3.3m at 2.53g/t	75		
					3.5m at 1.57g/t	95		
					1m at 5.51g/t	115		
	HBJUG0229	366,607	6,566,471	29	4.5m at 6.15g/t	3	9	338
					2.4m at 2.34g/t	9		
					0.4m at 14.9g/t	92		
	HBJUG0230	366,611	6,566,474	29	4.35m at 5.53g/t	6	15	337
					3.8m at 5.42g/t	13		
					1.94m at 3.33g/t	29		
	HBJUG0333	366,429	6,566,540	10	4.25m at 3.1g/t	167	-9	23
	HBJUG0334	366,429	6,566,540	10	0.77m at 11.1g/t	172	-16	26
	HBJUG0390	366,652	6,566,282	-189	6.3m at 2.51g/t	0	26	16
					5.1m at 9.66g/t	10		

SOUTH KALGOORLIE OPERATIONS (CONTINUED)

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
HBJ_UG					2.4m at 2.48g/t	15		
					2.7m at 15.11g/t	19		
	HBJUG0391	366,622	6,566,332	-189	3m at 13.33g/t	0	35	61
					2.4m at 3.54g/t	7		
	HBJUG0392	366,621	6,566,348	-188	2.78m at 10.9g/t	1	20	43
					1.15m at 8.2g/t	4		
					6.76m at 6.44g/t	21		
	HBJUG0393	366,619	6,566,352	-188	3.36m at 2.46g/t	43	7	357
					12.65m at 3.63g/t	58		
	HBJUG0394	366,732	6,566,184	-187	1.4m at 7.73g/t	10	8	58
	HBJUG0395	366,600	6,566,225	-196	5m at 4.67g/t	143	-16	3
					2.4m at 3.3g/t	150		
					2.03m at 12.38g/t	170		
					5m at 4.69g/t	192		
	HBJUG0396	366,600	6,566,225	-196	1.73m at 12.64g/t	78	-7	17
					2.8m at 2.23g/t	80		
					4.12m at 5.32g/t	86		
					2m at 6.28g/t	115		
	HBJUG0397	366,600	6,566,225	-196	1.76m at 3.66g/t	71	-13	50
					1.7m at 3.67g/t	76		
					1.65m at 3.93g/t	79		
					5.72m at 4.28g/t	102		
	HBJUG0398	366,600	6,566,225	-196	2.44m at 2.9g/t	73	-30	32
					2.5m at 9.11g/t	111		
	HBJUG0399	366,600	6,566,225	-196	3.61m at 3.1g/t	72	-21	54
					3.67m at 2.24g/t	82		
					0.9m at 19.5g/t	96		
	HBJUG0400	366,600	6,566,225	-196	3.05m at 5.75g/t	79	-22	82
					2.17m at 4.13g/t	120		
	HBJUG0409	366,709	6,566,219	-188	2.5m at 12.13g/t	10	37	48

SOUTH KALGOORLIE OPERATIONS (CONTINUED)

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
HBJ_UG	HBJUG0410	366,752	6,566,162	-187	3.8m at 1.83g/t	2	10	108
					10.3m at 7.88g/t	24		
					12.17m at 3.55g/t	34		
					5.57m at 3.98g/t	41		
	HBJUG0411	366,616	6,566,342	-190	9.2m at 10.8g/t	2	0	275
					4.9m at 9.3g/t	6		
	HBJUG0413	366,633	6,566,309	-188	2.31m at 5.59g/t	0	0	228
	HBJUG0414	366,643	6,566,298	-188	4.5m at 13.21g/t	0	0	239
					1.9m at 10.75g/t	4		
	HBJUG0415	366,647	6,566,281	-188	3.5m at 4.77g/t	0	0	239
	HBJUG0416	366,663	6,566,257	-188	4.96m at 1.25g/t	1	0	245
	HBJUG0417	366,645	6,566,294	-167	2.9m at 12g/t	0	29	231
	HBJUG0418	366,649	6,566,296	-167	2.04m at 7.89g/t	5	15	67
	HBJUG0420	366,643	6,566,304	-168	5.05m at 15.01g/t	1	-19	48
					1.28m at 10.5g/t	2		
					1.56m at 14.8g/t	5		
	HBJUG0421	366,634	6,566,322	-166	4.83m at 10.32g/t	0	7	84
	HBJUG0422	366,632	6,566,324	-167	6.35m at 9.53g/t	0	-10	46
	HBJUG0423	366,624	6,566,344	-167	0.5m at 18.2g/t	0	-5	77
					1.33m at 14.67g/t	8		
					6.57m at 3.8g/t	11		
	HBJUG0424	366,622	6,566,348	-167	5.33m at 2.03g/t	33	-9	13
					3.47m at 5.55g/t	38		
	HBJUG0426	366,687	6,566,228	-189	6.65m at 2.63g/t	4	0	218
	HBJUG0427	366,699	6,566,220	-189	2.83m at 2.07g/t	6	0	218
	HBJUG0428	366,753	6,566,169	-167	4.17m at 4.51g/t	4	0	25
					1.56m at 4.44g/t	13		
	HBJUG0429	366,755	6,566,167	-165	6m at 12.27g/t	10	31	83
	HBJUG0430	366,766	6,566,156	-167	4.02m at 3.02g/t	0	0	48
					4.54m at 4.3g/t	4.54m at 4.3g/t 7		
	HBJUG0431	366,766	6,566,153	-166	5.08m at 3.38g/t	0	11	97
					1.5m at 8.55g/t	15		

SOUTH KALGOORLIE OPERATIONS (CONTINUED)

UNDERGROUD DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
HBJ_UG	HBJUG0432	366,699	6,566,217	-169	4.76m at 7.92g/t	1	-10	60
					4.89m at 15.84g/t	16		
	HBJUG0433	366,731	6,566,188	-167	6.6m at 5.5g/t	0	18	35
					3.36m at 3.58g/t	12		

RESOURCE DEVELOPMENT DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Rinjani	RIN035	348,650	6,570,760	360	5m at 2.94g/t Au	35	-59	268
	RIN036	348,668	6,570,760	360	9m at 2.55g/t Au	55	-60	267
					14m at 1.38g/t Au	46		
	RIN039	348,730	6,570,760	360	11m at 3.62g/t Au	34	-59	266
	RIN041	348,660	6,570,780	360	10m at 0.68g/t Au	40	-60	266
	RIN042	348,679	6,570,780	360	6m at 1.04g/t Au	33	-60	267
					9m at 1.51g/t Au	42		
	RIN043	348,699	6,570,780	359	9m at 1.58g/t Au	57	-58	266
	RIN044	348,718	6,570,780	359	12m at 1.24g/t Au	33	-59	267
	RIN048D	348,654	6,570,840	360	13m at 3.66g/t Au	38	-60	270
					14m at 1.93g/t Au	63		
	RIN050D	348,594	6,570,840	360	19m at 0.72g/t Au	36	-60	90

EXPLORATION DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Tornado	T0A036	341,843	6,575,839	344	12m at 1.23g/t Au	28	-60	270
					5m at 1.10g/t Au	44		
	T0A037	341,868	6,575,843	344	8m at 1.83g/t Au	36	-60	270
					7m at 1.86g/t Au	48		
	T0A038	341,889	6,575,845	344	4m at 0.57g/t Au	16	-60	270
					15m at 0.84g/t Au	44		

HIGGINSVILLE GOLD PROJECT RESOURCE DEVELOPMENT DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Birthday Gift	MHRD0421	6,925	4,942	273	4m at 3.14g/t Au	50	-60	90
	MHRD0427	7,010	4,980	272	2m at 0.62g/t Au	21	-60	90
					18m at 1.1g/t Au	36		
	MHRD0430	7,010	4,908	268	8m at 0.82g/t Au	19	-60	90
	MHRD0432	7,010	4,861	262	2m at 0.72g/t Au	16	-60	90
					11m at 0.83g/t Au	26		
	MHRD0439	7,100	4,900	260	2m at 1.12g/t Au	3	-60	90
					5m at 0.98g/t Au	11		
	MHRD0447	7,201	4,928	253	1m at 6.23g/t Au	21	-60	90
	MHRD0450	7,249	4,940	251	3m at 3.6g/t Au	13	-60	90
	MHRD0451	7,252	4,917	250	3m at 3.53g/t Au	16	-60	90
	MHRD0453	7,298	4,978	255	4m at 14.7g/t Au	38	-60	90
	MHRD0455	7,302	4,903	249	2m at 15.8g/t Au	14	-60	90
Iron Prince	MHRD0340	8,450	4,961	256	3m at 2.01g/t Au	59	-60	90
	MHRD0341	8,499	5,009	260	4m at 1.66g/t Au	19	-60	90
	MHRD0342	8,499	4,989	258	9m at 1.96g/t Au	34		
	MHRD0343	8,499	4,969	257	NSI		-60	90
	MHRD0346	8,599	5,006	259	3m at 1.28g/t Au	21	-60	90
					2m at 1.23g/t Au	30		
					4m at 1.99g/t Au	41		
Magnet Ann	MHRD0264	7,351	4,895	249	4m at 0.8g/t Au	0	-60	90
					3m at 2.87g/t Au	27		
	MHRD0265	7,353	4,869	251	2m at 0.77g/t Au	35	-60	90
					9m at 1.8g/t Au	40	-60	90
	MHRD0266	7,375	4,885	250	11m at 0.77g/t Au	24	-60	90
	MHRD0267	7,401	4,901	248	8m at 1.29g/t Au	22	-60	90
	MHRD0269	7,425	4,916	248	4m at 3.45g/t Au	17	-60	90
					2m at 0.51g/t Au	22		
	MHRD0270	7,424	4,892	249	9m at 3.21g/t Au	34	-60	90
	MHRD0271	7,449	4,944	251	2m at 1.48g/t Au	6	-60	90
	MHRD0272	7,452	4,903	251	4m at 1.75g/t Au	41	-60	90

HIGGINSVILLE GOLD PROJECT (CONTINUED) RESOURCE DEVELOPMENT DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Magnet Ann	MHRD0276	7,526	4,940	261	2m at 0.61g/t Au	2	-60	90
					4m at 3.43g/t Au	20		
					2m at 0.65g/t Au	26		
	MHRD0277	7,525	4,918	260	8m at 0.83g/t Au	31	-60	90
					12m at 1.25g/t Au	45		
	MHRD0278	7,549	4,955	262	7m at 0.72g/t Au	5	-60	90
	MHRD0279	7,599	4,947	263	10m at 1.83g/t Au	13	-60	90
	MHRD0285	7,671	4,918	261	2m at 1.9g/t Au	36	-60	90
					5m at 1.92g/t Au	44		
					3m at 0.79g/t Au	52		
	MHRD0286	7,700	4,959	256	2m at 0.65g/t Au	4	-60	90
					8m at 0.79g/t Au	9		
	MHRD0290	7,726	4,921	254	2m at 0.98g/t Au	23	-60	90
					15m at 1.15g/t Au	34		
	MHRD0291	7,751	4,959	251	2m at 1.19g/t Au	3	-60	90
	MHRD0293	7,799	4,963	250	13m at 1.51g/t Au	3	-60	90
	MHRD0294	7,800	4,935	248	13m at 1.24g/t Au	19	-60	90
	MHRD0295	7,825	4,971	250	11m at 1.08g/t Au	4	-60	90
	MHRD0297	7,825	4,923	247	2m at 4.17g/t Au	40	-60	90
					4m at 2.01g/t Au	54		
	MHRD0298	7,874	4,971	249	12m at 0.96g/t Au	9	-60	90
	MHRD0299	7,874	4,948	246	10m at 0.82g/t Au	30	-60	90
					13m at 0.86g/t Au	49		
	MHRD0313	8,026	4,972	247	2m at 2.61g/t Au	1	-60	90
					5m at 0.75g/t Au	13		
	MHRD0319	8,075	4,973	248	17m at 2.35g/t Au	11	-60	90
Mitchell	MITA0176	6,482,665	380,060	263	2m at 3.54g/t Au	0	-61	89
					2m at 5.39g/t Au	25		
	MITA0182	6,482,619	379,999	262	4m at 1.77g/t Au	16	-60	83
	MITA0185	6,482,771	380,176	257	5m at 4.16g/t Au	6	-60	270
	MITA0196	6,482,889	380,047	263	2m at 1.17g/t Au	10	-58	94
					5m at 2.63g/t Au	19		
					3m at 1.2g/t Au	27		

HIGGINSVILLE GOLD PROJECT (CONTINUED) RESOURCE DEVELOPMENT DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Mitchell	MITA0197	6,482,914	380,039	262	2m at 9.78g/t Au	17	-61	95
	MITA0200	6,483,027	380,059	260	2m at 3.04g/t Au	16	-60	90
	MITA0205	6,483,075	380,090	260	2m at 1.44g/t Au	7	-90	0
					3m at 7.84g/t Au	15		
Mount Henry	MHRD0094	10,300	4,976	321	9m at 0.82g/t Au	12	-60	90
					15m at 1.34g/t Au	24		
	MHRD0098	10,327	4,946	318	10m at 1.01g/t Au	33	-60	90
	MHRD0101	10,375	5,022	323	12m at 3.01g/t Au	12	-60	90
	MHRD0108	10,450	5,010	319	6m at 1.15g/t Au	0	-60	90
	MHRD0112	10,475	4,949	313	7m at 0.87g/t Au	29	-60	90
	MHRD0114	10,500	5,007	317	13m at 0.91g/t Au	10	-60	90
					8m at 2.02g/t Au	33		
	MHRD0121	10,575	5,014	315	18m at 16.4g/t Au	14	-60	90
	MHRD0123	10,575	4,967	312	7m at 2g/t Au	5	-60	90
					8m at 1.87g/t Au	29		
	MHRD0127	10,625	5,019	313	17m at 2.09g/t Au	8	-60	90
	MHRD0131	10,650	5,006	312	6m at 1.78g/t Au	17	-60	90
	MHRD0160	9,350	5,052	310	6m at 0.52g/t Au	8	-60	83
					7m at 2.03g/t Au	20		
					4m at 1.19g/t Au	44		
	MHRD0187	8,862	5,129	279	2m at 3.32g/t Au	4	-60	80
	MHRD0188	8,913	5,075	289	4m at 2.16g/t Au	4	-60	90
	MHRD0189	8,913	5,099	290	7m at 1.02g/t Au	41	-60	85
	MHRD0190	8,913	5,123	289	12m at 1.57g/t Au	17	-60	90
	MHRD0193	8,960	5,123	290	4m at 2.09g/t Au	0	-60	90
					9m at 2.00g/t Au	8		
	MHRD0196	9,012	5,123	290	3m at 1.4g/t Au	0	-60	90
	MHRD0199	9,288	5,053	309	8m at 1.22g/t Au	18	-50	90
	MHRD0203	9,362	5,061	310	7m at 0.78g/t Au	1	-60	90
					11m at 2.78g/t Au	15		
					3m at 2.59g/t Au	40		

HIGGINSVILLE GOLD PROJECT (CONTINUED) RESOURCE DEVELOPMENT DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Mount Henry	MHRD0204	9,362	5,075	304	8m at 0.74g/t Au	0	-60	90
					3m at 2.14g/t Au	17		
	MHRD0208	9,450	5,067	314	6m at 0.55g/t Au	8	-60	90
					5m at 1.37g/t Au	23		
	MHRD0209	9,450	5,093	305	3m at 1.6g/t Au		-54	95
	MHRD0210	9,500	5,066	318	8m at 1.14g/t Au	5	-60	90
					2m at 0.92g/t Au	24		
	MHRD0216	9,650	5,062	328	3m at 1.72g/t Au	28	-60	94
	MHRD0217	9,700	5,062	327	2m at 0.63g/t Au	6	-60	88
					3m at 1.59g/t Au	20		
					4m at 1.85g/t Au	49		
	MHRD0225	9,950	5,056	336	2m at 0.52g/t Au	19	-60	-85
					22m at 1.29g/t Au	56		
	MHRD0229	9,997	5,084	331	2m at 6.54g/t Au	0	-60	90
	MHRD0230	10,050	5,045	336	6m at 1g/t Au	23	-60	90
					6m at 1.28g/t Au	29		
					5m at 0.98g/t Au	39		
	MHRD0238	9,300	5,049	309	3m at 0.9g/t Au	19	-60	90
					4m at 1.55g/t Au	46		
	MHRD0240	9,312	5,043	310	11m at 1g/t Au	0	-60	90
	MHRD0241	9,325	5,048	309	7m at 1.38g/t Au	12	-60	90
	MHRD0242	9,337	5,040	310	13m at 1.38g/t Au	4	-60	85
					2m at 1g/t Au	31		
					4m at 1.34g/t Au	56		
	MHRD0243	9,362	5,040	310	9m at 0.82g/t Au	27	-60	94
	MHRD0249	9,875	5,036	334	5m at 1.23g/t Au	17	-83	92
					2m at 1.37g/t Au	36		
					9m at 0.96g/t Au	67		
	MHRD0252	9,775	5,048	330	2m at 3.92g/t Au	14	-60	90
	MHRD0256	9,337	5,052	310	2m at 0.68g/t Au	6	-60	90
					16m at 1.65g/t Au	12		
	MHRD0257	9,325	5,060	308	6m at 1.78g/t Au	40		

HIGGINSVILLE GOLD PROJECT (CONTINUED)

RESOURCE DEVELOPMENT DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Mount Henry	MHRD0260	9,275	5,054	309	11m at 1.5g/t Au	37		
					2m at 1.8g/t Au	40		
	MHRD0261	9,086	5,078	298	4m at 2.16g/t Au	8	-60	90
					14m at 1.17g/t Au	13		
					2m at 0.93g/t Au	22		

FORTNUM GOLD PROJECT RESOURCE DEVELOPMENT DRILLING RESULTS

Lode	Hole	Intercept N	Intercept E	Intercept RL	Intercept (Downhole)	From (m)	Dip	Azi
Trev's / Galaxy	TRS_DH01	7,198,891	636,695	373	3.9m at 19.86g/t Au	152.9	11	334
Twilight	WGU0001	7,198,865	636,701	366	10.3m at 1.33g/t Au	85.5	-36	66
					8.1m at 1.09g/t Au	109.3		
	WGU0002	7,198,865	636,701	365	4.9m at 2.16g/t Au	102.9	-41	69
	WGU0004	7,198,865	636,701	365	2.4m at 4.45g/t Au	108.9	-33	51
	WGU0005	7,198,865	636,701	365	3.2m at 1.86g/t Au	118.7	-41	51
	WGU0006	7,198,866	636,701	366	5.3m at 3.01g/t Au	127.0	-9	29
	WGU0008	7,198,865	636,701	365	2.2m at 2.79g/t Au	138.0	-38	28
	WGU0010	7,198,866	636,701	366	2.8m at 3.4g/t Au	124.9	-17	26
					4.5m at 3.82g/t Au	136.0		
	WGU0011	7,198,866	636,700	366	1.1m at 7.73g/t Au	170.6	-4	18
	WGU0012	7,198,866	636,700	366	5.8m at 11.97g/t Au	157.8	-15	18
	WGU0013	7,198,866	636,700	365	1.6m at 3.94g/t Au	113.6	-21	19
					9.2m at 2.34g/t Au	145.7		
	WGU0014	7,198,866	636,700	365	5.3m at 3.93g/t Au	145.0	-30	19

NOTES ON DRILLING RESULTS

CMGP

- Coordinates are collar.
- Grid is MGA 1994 Zone 50.
- Significant = >5g/m for resources and grade control >2g/m for exploration.

HGO

- Coordinates are collar.
- Grid is MGA 1994 Zone 51 except for Fairplay where it is "Trident Mine Grid"
- Significant = >5g/m or 200ppbm for exploration.

SK0

- Widths are downhole.
- Coordinates are collar.
- Grid is MGA 1994 Zone 51.
- Significant = >5g/m for resources.

FGP

- Widths are downhole.
- Coordinates are collar.
- Grid is MGA 1994 Zone 51.
- Significant = >5g/m.

COMPLIANCE STATEMENTS

Exploration Targets, Exploration Results and Mineral Resources

The information in this report that relates to Exploration Targets, Exploration Results and Mineral Resources is compiled by Westgold technical employees and contractors under the supervision of Mr. Jake Russell B.Sc. (Hons), who is a member of the Australian Institute of Geoscientists. Mr Russell is a full time employee to the company, and has sufficient experience which is relevant to the styles of mineralisation and types of deposit under consideration and to the activities which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Russell consents to the inclusion in this report of the matters based on his information in the form and context in which it appears. Mr Russell is eligible to participate in short and long term incentive plans of the company.

Mineral Resources and Ore Reserves

The information is extracted from the report entitled '2017 Annual Update of Mineral Resources & Ore Reserves' created by Westgold on 4 September 2017 and is available to view on Westgold's website (www.westgold.com.au) and the ASX (www.asx.com.au). The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Forward Looking Statements

Certain statements in this report relate to the future, including forward looking statements relating to Westgold's financial position and strategy. These forward looking statements involve known and unknown risks, uncertainties, assumptions and other important factors that could cause the actual results, performance or achievements of Westgold to be materially different from future results, performance or achievements expressed or implied by such statements. Actual events or results may differ materially from the events or results expressed or implied in any forward looking statement and deviations are both normal and to be expected. Other than required by law, neither Westgoldd, their officers nor any other person gives any representation, assurance or guarantee that the occurrence of the events expressed or implied in any forward looking statements will actually occur. You are cautioned not to place undue reliance on those statements.

JORC 2012 TABLE 1 - SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 HGO Diamond Drilling The bulk of the data used in resource calculations at Trident has been gathered from diamond core. Four types of diamond core sample have been historically collected. The predominant sample method is half-core NQ2 diamond with half-core LTK60 diamond, Whole core LTK48 diamond and whole core BQ also used. This core is logged and sampled to geologically relevant intervals. The bulk of the data used in resource calculations at Chalice has been gathered from diamond core. The predominant drilling and sample type is half core NQ2 diamond. Occasionally whole core has been sampled to streamline the core handling process. Historically half and whole core LTK60 and half core HQ diamond have been used. This core is logged and sampled to geologically relevant intervals. Face Sampling Each development face / round is chip sampled at both Trident and Chalice. One or two channels are taken per face perpendicular to the mineralisation. The sampling intervals are domained by geological constraints (e.g. rock type, veining and alteration / sulphidation etc.) with an effort made to ensure each 3kg sample is representative of the interval being extracted. Samples are taken in a range from 0.1 m up to 1.2 m in waste / mullock. All exposures within the orebody are sampled.
Drilling techniques Drill sample recovery	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/ coarse material. 	 For Fairplay, Vine, Lake Cowan, Two Boys, Mousehollow, Pioneer and Eundynie the bulk of the data used in the resource estimate is sourced from RC drilling. Minor RC drilling is also utilised at Trident, Musket, Chalice and the Palaeochannels (Wills, Pluto, Mitchell 3 and 4). Drill cuttings are extracted from the RC return via cyclone. The underflow from each 1 m interval is transferred via bucket to a four tiered riffle splitter, delivering approximately three kilograms of the recovered material into calico bags for analysis. The residual material is retained on the ground near the hole. Samples too wet to be split through the riffle splitter are taken as grabs and are recorded as such. RAB / Air Core Drilling Drill cuttings are extracted from the RAB and Aircore return via cyclone. 4m Composite samples are

Criteria	JORC Code Explanation	Con	nmentary
			SKO
			SKO is a long-term producing operation with a long history of drilling and sampling to support exploration and resource development.
		•	Sampling Techniques
			Chips from the RC drilling face-sampling hammer are collected for assaying. Sample return lines are cleaned with compressed air each metre and the cyclone sample collector is cleaned following each rod. Samples are riffle split through a three-tier splitter with a split ~3kg sample (generally at 1m intervals) pulverised to produce a 30g charge analysed via fire assay.
			Diamond drill-core is geologically logged and then sampled according to geology (minimum sample length of 0.4 m to maximum sample length of 1.5 m) – where consistent geology is sampled, a 1m length is used for sampling the core. The core is sawn half-core with one half sent off for analysis.
			Samples have been collected from numerous other styles of drilling at SKO, including but not limited to RAB, aircore, blast-hole, sludge drilling and face samples.
		•	Drilling Techniques
			Historical data includes DD, RC, RAB and aircore holes drilled between 1984 and 2010. Not all the historical drilling programmes at SKO are documented and many historical holes are assigned a drill type of 'unknown'. Over 4,000 km of drilling has been completed on the tenure.
			Drilling by the most recent previous owners (Alacer Gold Corporation) has predominantly been RC, with minor DD and aircore drilling.
			RC drilling is used predominantly for defining and testing for near-surface mineralisation and utilises a face sampling hammer with the sample being collected on the inside of the drill-tube. RC drillholes utilise downhole single or multi shot cameras. Drillhole collars were surveyed by onsite mine surveyors.
			Diamond drilling is used for either testing / targeting deeper mineralised systems or to define the orientation of the host geology. Many of these holes had RC pre-collars generally to a depth of between 60 – 120m, followed by a diamond tail. The majority of these holes have been drilled at NQ2 size with minor HQ sized core. All diamond holes were surveyed during drilling with downhole cameras, and then at end of hole using a Gyro Inclinometer at 5 or 10 m intervals. Drillhole collars were surveyed by onsite mine surveyors.
		•	Sample Recovery
			Sample recovery is generally good, and there is no indication that sampling presents a material risk for the quality of the evaluation of any deposit at SKO.

Criteria	JORC Code Explanation	Com	imentary
			CMGP
		•	Diamond Drilling
			A significant portion of the data used in resource calculations at the CMGP has been gathered from diamond core. Multiple sizes have been used historically. This core is geologically logged and subsequently halved for sampling. Grade control holes may be whole-cored to streamline the core handling process if required.
		•	Face Sampling
			At each of the major past and current underground producers at the CMGP, each development face / round is horizontally chip sampled. The sampling intervals are domained by geological constraints (e.g. rock type, veining and alteration / sulphidation etc.). The majority of exposures within the orebody are sampled.
		•	Sludge Drilling
			Sludge drilling at the CMGP was / is performed with an underground production drill rig. It is an open hole drilling method using water as the flushing medium, with a 64mm (nominal) hole diameter. Sample intervals are ostensibly the length of the drill steel. Holes are drilled at sufficient angles to allow flushing of the hole with water following each interval to prevent contamination. Sludge drilling is not used to inform resource models.
		•	RC Drilling
			Drill cuttings are extracted from the RC return via cyclone. The underflow from each interval is transferred via bucket to a four tiered riffle splitter, delivering approximately three kilograms of the recovered material into calico bags for analysis. The residual material is retained on the ground near the hole. Composite samples are obtained from the residue material for initial analysis, with the split samples remaining with the individual residual piles until required for re-split analysis or eventual disposal.
		•	RAB / Aircore Drilling
			Combined scoops from bucket dumps from cyclone for composite. Split samples taken from individual bucket dumps via scoop. RAB holes are not included in the resource estimate.
		•	Blast Hole Drilling
			Cuttings sampled via splitter tray per individual drill rod. Blast holes not included in the resource estimate.
			All geology input is logged and validated by the relevant area geologists, incorporated into this is assessment of sample recovery. No defined relationship exists between sample recovery and grade. Nor has sample bias due to preferential loss or gain of fine or coarse material been noted.

Criteria	JORC Code Explanation	Commentary
		FGP
		• Historic reverse circulation drilling was used to collect samples at 1m intervals with sample quality, recovery and moisture recorded on logging sheets. Bulk samples were composited to 4-5m samples by PVC spear. These composites were dried, crushed and split to produce a 30g charge for aqua regia digest at the Fortnum site laboratory.
		• For Westgold (MLX) RC Drilling drill cuttings are extracted from the RC return via cyclone. The underflow from each interval is transferred via bucket to a four tiered riffle splitter, delivering approximately three kilograms of the recovered material into calico bags for analysis. The residual material is retained on the ground near the hole. Composite samples are obtained from the residue material for initial analysis, with the split samples remaining with the individual residual piles until required for re-split analysis or eventual disposal.
		• In the case of grade control drilling, 1m intervals were split at the rig via a 3-tier splitter box below the cyclone and collected in calico bags with bulk samples collected into large plastic bags. These 1m splits were dried, pulverised and split to produce a 50g charge for fire assay at an offsite laboratory.
		• Where composite intervals returned results >0.15g/t Au, the original bulk samples were split by 3-tier riffle splitter to approximately 3-4kg. The whole sample was dried, pulverised and split to produce a 50g charge for fire assay at an offsite laboratory.
		• Historic diamond drilling sampled according to mineralisation and lithology resulting in samples of 10cm to 1.5m. Half core pulverised and split to produce a 50g charge for fire assay at an offsite laboratory.
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	• Westgold surface drill-holes are all orientated and have been logged in detail for geology, veining, alteration, mineralisation and orientated structure. Westgold underground drill-holes are logged in detail for geology, veining, alteration, mineralisation and structure. Core has been logged in enough detail to allow for the relevant mineral resource estimation techniques to be employed.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant 	are stored on the companies servers, with the photographs from each hole contained within separate
	intersections logged	Development faces are mapped geologically.
		RC, RAB and Aircore chips are geologically logged.
		• Sludge drilling is logged for lithology, mineralisation and vein percentage.
		Logging is quantitative in nature.
		All holes are logged completely, all faces are mapped completely.

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	• NQ2 and LTK60 diameter core is sawn half core using a diamond-blade saw, with one half of the core
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. 	• For the onsite Intertek facility the entire dried sample is jaw crushed (JC2500 or Boyd Crusher) to a nominal 85% passing 2mm with crushing equipment cleaned between samples. An analytical sub-sample of approximately 500-750 g is split out from the crushed sample using a riffle splitter, with
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/ second-half sampling. 	(single stage mix and grind using LM5 mills) to a target of 85-90% passing 75µm in size. A 200g sub- sample is then separated out for analysis.
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	lengths.
		 The sample size is considered appropriate for the grain size of the material being sampled. For RC, RAB and Aircore chips regular field duplicates are collected and analysed for significant variance to primary results.
		RAB and Aircore sub-samples are collected through spear sampling. SK0
		• NQ2 and HQ diameter core is sawn half core using a diamond-blade saw, with one half of the core consistently taken for analysis. Smaller sized core (LTK48 and BQ) are whole core sampled. The unsampled half of diamond core is retained for check sampling if required.
		• SKO staff collect the sample in pre-numbered calico sample bags which are then submitted to the laboratory for analysis. Delivery of the sample is by a SKO staff member.
		• RC samples are collected at 1m intervals with the samples being riffle split through a three-tier splitter. The samples are collected by the RC drill crews in pre-numbered calico sample bags which are then collected by SKO staff for submission. Delivery of the sample to the laboratory is by a SKO staff member.
		• Upon delivery to the laboratory, the sample numbers are checked by the SKO staff member against the sample submission sheet. Sample numbers are recorded and tracked by the laboratory using electronic coding.
		• Sample preparation techniques are considered appropriate for the style of mineralisation being tested for – this technique is industry standard across the Eastern Goldfields.

Criteria	JORC Code Explanation	Commentary
		СМБР
		Blast holes -Sampled via splitter tray per individual drill rods.
		• RAB / AC chips - Combined scoops from bucket dumps from cyclone for composite. Split samples taken from individual bucket dumps via scoop.
		• RC - Three tier riffle splitter (approximately 5kg sample). Samples generally dry.
		• Face Chips - Nominally chipped horizontally across the face from left to right, sub-set via geological features as appropriate.
		• Diamond Drilling - Half-core niche samples, sub-set via geological features as appropriate. Grade control holes may be whole-cored to streamline the core handling process if required.
		Chips / core chips undergo total preparation.
		• Samples undergo fine pulverisation of the entire sample by an LM5 type mill to achieve a 75µ product prior to splitting.
		• QA/QC is currently ensured during the sub-sampling stages process via the use of the systems of an independent NATA / ISO accredited laboratory contractor. A significant portion of the historical informing data has been processed by in-house laboratories.
		• The sample size is considered appropriate for the grain size of the material being sampled.
		• The un-sampled half of diamond core is retained for check sampling if required. For RC chips regular field duplicates are collected and analysed for significant variance to primary results.
		FGP
		• Diamond core samples to be analysed were taken as half core. Sample mark-up was controlled by geological domaining represented by alteration, mineralisation and lithology.
		• Reverse circulation samples were split from dry, 1m bulk sample via a 3-tier riffle splitter. Field duplicates were inserted at a ratio of 1:20, analysis of primary vs duplicate samples indicate sampling is representative of the insitu material.
		• Standard material was documented as being inserted at a ratio of 1:100 for both RC and diamond drilling.
		• Detailed discussion of sampling techniques and Quality Control are documented in publicly available exploration technical reports compiled by prior owners (Homestake, Perilya, Gleneagle, RNI).

Criteria	JORC Code Explanation	Commentary
Criteria J Quality of assay data and laboratory tests .	 JURC Code Explanation The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 HGO At the Intertek on-site facility, analysis is performed using a 500g PAL method. The accurately weighed sub-sample is further processed utilising a PAL1000B to grind the sample to a nominal 90% passing 75µm particle size, whilst simultaneously extracting any cyanide amenable gold liberated into a Leachwell liquor. The resulting liquor is then analysed for gold content by organic extraction with flame AAS finish, with an overall method detection limit of 0.01ppm Au content in the original sample. This method is appropriate for the type and magnitude of mineralisation at Higginsville. Quality control procedures include the use of standards, blanks and duplicates. Standards and duplicates are used to test both the accuracy and precision of the analytical process, while blanks are employed to test for contamination during the sample preparation stage. The analyses have confirmed the analytical process employed at Higginsville is adequately precise and accurate for use as part of the mineral resource estimation. SKO Only nationally accredited laboratories are used for the analysis of the samples collected at SKO. The laboratory dry and if necessary [if the sample is >3kg] riffle split the sample, which is then jaw crushed and pulverised (the entire 3kg sample) in a ring mill to a nominal 90% passing 75 microns. All recent RC and Diamond core samples are analysed via Fire Assay, which involves a 30g charge (sub-sampled after the pulverisation) of the analytical pulp being fused at 1050°C for 45 minutes with litharge. The resultant metal pill is digested in aqua regia and the gold content determined by atomic adsorption spectrometry – detection limit is 0.01 ppm Au. Quality Assurance and Quality Control (QA/QC) samples are routinely submitted by SKO staff and comprise standards, blanks, assay pills, field duplicates, lab duplicates and repeat analyses. The results for these QA/QC samples are routinely analysed by Senior Geologists with any dis
		 0.01 ppm Au. Quality Assurance and Quality Control (QA/QC) samples are routinely submitted by SKO staff comprise standards, blanks, assay pills, field duplicates, lab duplicates and repeat analyses. results for these QA/QC samples are routinely analysed by Senior Geologists with any discrepan dealt with in conjunction with the laboratory prior to the analytical data being imported into database. There is limited information available on historic QA/QC procedures. SKO has generally accepted available data at face value and carry out data validation procedures as each deposit is re-evalua. The analytical techniques used are considered appropriate for the style of mineralisation being term.

Criteria	JORC Code Explanation	Commentary
		CMGP
		Recent drilling was analysed by fire assay as outlined below;
		» A 50g sample undergoes fire assay lead collection followed by flame atomic adsorption spectrometry.
		» The laboratory includes a minimum of 1 project standard with every 22 samples analysed.
		» Quality control is ensured via the use of standards, blanks and duplicates.
		• No significant QA/QC issues have arisen in recent drilling results.
		• Historical drilling has used a combination of Fire Assay, Aqua Regia and PAL analysis.
		These assay methodologies are appropriate for the resources in question.
		FGP
		• Historic assaying of RC and core was done by 50g charge fire assay with Atomic Absorption Spectrometry finish at Analabs. The method is standard for gold analysis and is considered appropriate in this case. No Laboratory Certificates are available for historic assay results pre 2008 however, evaluation of the database identified the following;
		• Standards are inserted at a ratio of 1:100,
		Assay repeats inserted at a ratio of 1 in 20.
		• QA/QC analysis of this historic data indicates the levels of accuracy and precision are acceptable.
		• Assay of recent (post 2012) sampling was done by 40g charge fire assay with Inductively Coupled Plasma – Optical Emission Spectroscopy finish at Bureau Veritas (Ultratrace), Perth. The method is standard for gold analysis and is considered appropriate in this case. Laboratory Certificates are available for the assay results and the following QA/QC protocols used include; Laboratory Checks inserted 1 in 20 samples, CRM inserted 1 in 30 samples and Assay Repeats randomly selected 1 in 15 samples.
		• QA/QC analysis of this data indicates the levels of accuracy and precision are acceptable with no significant bias observed.
Verification of sampling	• The verification of significant intersections by either	No independent or alternative verifications are available.
and assaying	independent or alternative company personnel.The use of twinned holes.	• Virtual twinned holes have been drilled in several instances across all sites with no significant issues highlighted. Drillhole data is also routinely confirmed by development assay data in the operating
	Documentation of primary data, data entry	environment.
	procedures, data verification, data storage (physical and electronic) protocols.	• Primary data is collected utilising LogChief. The information is imported into a SQL database server and verified.
	• Discuss any adjustment to assay data.	• All data used in the calculation of resources and reserves are compiled in databases (underground and open pit) which are overseen and validated by senior geologists.
		No adjustments have been made to any assay data.

Criteria	JORC Code Explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 HGO Collar coordinates for surface drill-holes were generally determined by GPS, with underground drill-holes generally determined by survey pick-up. Downhole survey measurements for most surface diamond holes were by Gyro-compass at 5m intervals. Holes not gyro-surveyed were surveyed using Eastman single shot cameras at 20m intervals. Downhole surveys for underground diamond drill-holes were taken at 15 – 30m intervals by Reflex single-shot cameras. Routine survey pick-ups of underground and surface holes where they intersected development indicates (apart from some minor discrepancies with pre-Avoca drilling) a survey accuracy of less than 5m. All drilling and resource estimation is undertaken in local mine grid at the various projects.
		 Act dritting and resource estimation is undertaken in local mine grid at the various projects. Topographic control is generated from Differential GPS. This methodology is adequate for the resource in question. SKO Collar coordinates for surface RC and diamond drill-holes were generally determined by either RTK-GPS or a total station survey instrument. Underground drill-hole locations (Mount Marion and HBJ) were all surveyed using a Leica reflectorless total station.
		 Recent surface diamond holes were surveyed during drilling with down-hole single shot cameras and then at the end of the hole by Gyro-Inclinometer at 5 or 10mm intervals. Holes not gyro-surveyed were surveyed using Eastman single shot cameras at 20m intervals. RC drill-holes utilised down- hole single shot camera surveys spaced every 15 to 30m down- hole.
		• Down-hole surveys for underground diamond drill-holes were taken at 15 – 30m intervals by Reflex single-shot cameras.
		• The orientation and size of the project determines if the resource estimate is undertaken in local or MGA 94 grid. Each project has a robust conversion between local, magnetic and an MGA grid which is managed by the SKO survey department.
		 Topographic control is generated from RTK GPS. This methodology is adequate for the resources in question. CMGP
		 All data is spatially oriented by survey controls via direct pickups by the survey department. Drillholes are all surveyed downhole, deeper holes with a Gyro tool if required, the majority with single / multishot cameras.
		• All drilling and resource estimation is preferentially undertaken in local mine grid at the various sites.
		 Topographic control is generated from a combination of remote sensing methods and ground-based surveys. This methodology is adequate for the resources in question. FGP
		 The grid system used for historic Fortnum drilling is the established Fortnum Mine Grid. Control station locations and traverses have been verified by eternal survey consultants (Ensurv). Collar locations of boreholes have been established by either total station or differential GPS (DGPS). The Yarlarweelor, Callie's and Eldorado open pits (currently abandoned) was picked up by DGPS at the conclusion of mining. The transformation between Mine Grid and MGA94 Zone 50 is documented and well established.

Criteria	JORC Code Explanation	Commentary
		• A LIDAR survey over the project area was undertaken in 2012 and results are in agreement with survey pickups of pits, low-grade stockpiles and waste dumps.
		• Historic drilling by Homestake was routinely surveyed at 25m, 50m and every 50m thereafter, using a single shot CAMTEQ survey tool. RC holes have a nominal setup azimuth applied. Perilya YLRC series holes had survey shots taken by gyro every 10m. Historic drilling in the area did not appear to have any significant problems with hole deviation.
		• Drilling by RNI / MLX was picked up by DGPS on MGA94. Downhole surveys were taken by digital single shot camera every 50m or via a gyro survey tool.
Data spacing and	• Data spacing for reporting of Exploration Results.	HGO
distribution	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral	• Drilling in the underground environment at Trident is nominally carried-out on 20m x 30m spacing for resource definition and in filled to a 10m x 15m spacing with grade control drilling. At Trident the drill spacing below the 500RL widens to an average of 40m x 80m.
	Resource and Ore Reserve estimation procedure(s) and classifications applied.	• Drilling at the Lake Cowan region is on a 20m x 10m spacing. Historical mining has shown this to be an appropriate spacing for the style of mineralisation and the classifications applied.
	• Whether sample compositing has been applied.	Compositing is carried out based upon the modal sample length of each project.
		SKO
		• HBJ:
		• Drill spacing ranges from 10m x 5m grade control drilling to 100m x 100m at deeper levels of the resource. The majority of the Indicated Resource is estimated using a maximum drill spacing of 40m x 40m. The resource has been classified based on drill density with
		• mining of the 2.2km long HBJ Open-Pit confirming that the data spacing is adequate for the resource classifications applied.
		Mount Martin:
		• Drill spacing ranges from 10m x 5m grade control drilling to 60m x 60m for the Inferred areas of the resource. The drill spacing for the majority of the Indicated Resource is 20m x 20m. The resource has been classified primarily on drill density and the confidence in the geological/grade continuity – the data spacing and distribution is deemed adequate for the estimation techniques and classifications applied.
		Pernatty:
		 Drill spacing for the reported resource is no greater than 60m x 60m with the majority of the Indicated resource based on a maximum spacing of 40m x 40m. The geological interpretation of the area is well understood, and is supported by the knowledge from open pit and underground operations. However given the mineralisation is controlled by shear zones the mineralisation continuity is considered to be less understood. The resource is classified on a combination of drill density and the number of samples used to estimate the resource blocks.

Criteria	JORC Code Explanation	Commentary
		 Mount Marion: Drill-spacing ranges from 20m x 20m to no greater than 60m x 60m for the reported resource Given that the geological and mineralisation understanding is well established via mining operations, this drill-spacing is considered adequate for the classifications applied to the resource. Compositing is carried out based upon the modal sample length of each project. CMGP Data spacing is variable dependent upon the individual orebody under consideration. A lengthy history of mining has shown that this approach is appropriate for the Mineral Resource estimation process and to allow for classification of the resources as they stand. Compositing is carried out based upon the modal sample length of each individual domain. FGP Drillhole spacing is a nominal 40m x 40m that has been in-filled to a nominal 20m x 20m in the main zone of mineralisation at Yarlarweelor, Callie's and Eldorado with 10m x10m RC grade control within the limits of the open pits. The spacing is considered sufficient to establish geological and grade continuity for appropriate Mineral Resource classification. During the historic exploration phase, samples were composited to 4m by spearing 1m bulk samples. Where the assays returned results greater than 0.15ppm Au, the original 1m bulk samples were split using a 3-tier riffle splitter and analysed as described above.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling intersections are nominally designed to be normal to the orebody as far as underground infrastructure constraints / topography allows. Development sampling is nominally undertaken normal to the various orebodies. Where drilling angles are sub optimal the number of samples per drill hole used in the estimation has been limited to reduce any potential bias. It is not considered that drilling orientation has introduced an appreciable sampling bias.
Sample security	• The measures taken to ensure sample security.	• The core is transported to the core storage facility by either drilling company personnel or geological staff. Once at the facility the samples are kept in a secure location while logging and sampling is being conducted. The storage facility is enclosed by a fence which is locked at night or when the geology staff are absent. The samples are transported to the laboratory facility or collection point by geological staff.

Criteria	JORC Code Explanation	Cor	mmentary
Audits or reviews	• The results of any audits or reviews of sampling		HGO
	techniques and data	•	A review of the grade control practices on site has been undertaken by an external consultant. No formal external audit or review has been performed on the resource estimate. Site generated resources and reserves and the parent geological data is routinely reviewed by the Westgold Corporate technical team.
			SKO
		•	No formal external audit or review has been performed on the sampling techniques and data. Site generated resources and reserves and the parent geological data is routinely reviewed by the Westgold Corporate technical team.
			CMGP
		•	Site generated resources and reserves and the parent geological data is routinely reviewed by the Westgold Corporate technical team.
			FGP
		•	Site generated resources and reserves and the parent geological data is routinely reviewed by the Westgold Corporate technical team.

SECTION 2 REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Trident Resource is located within mining leases M15/0642, M15/0351 and M15/0348. M15/0351 and M15/0642 also incur the Morgan Stanley royalty of 4% of revenue after 100,000oz of production and the Morgan Stanley price participation royalty at 10% of incremental revenue for gold prices above AUD\$600/oz. M15/0642 is also subject to the Mitchell Royalty at AUD\$32/oz.
		 titles (which host the majority of SKO's Resource inventory). There are a number of minor agreements attached to a select number of tenements and locations with many of these royalty agreements associated with tenements with no current Resources and/or Reserves.
		 Private royalty agreements are in place that relate to production from HBJ open-pit at \$10/ oz. In addition, a royalty is payable in the form of 1.75% of the total gold ounces produced from the following resources: Shirl Underground, Golden Hope, Bellevue, HBJ Open-pit, Mount Martin open-pit, Mount Martin Stockpiles and any reclaimed tailings.

Criteria	JORC Code Explanation	Commentary
		• SKO consists of 141 tenements including 16 freehold titles, 6 exploration licenses, 47 mining leases, 12 miscellaneous licenses and 60 prospecting licenses, all held directly by the Company.
		There are no known issues regarding security of tenure.
		There are no known impediments to continued operation.
		CMGP
		Native title interests are recorded against several CMGP tenements.
		The CMGP tenements are held by the Big Bell Gold Operations
		(BBG0) of which Westgold has 100% ownership.
		 Several third party royalties exist across various tenements at CMGP, over and above the state government royalty.
		• BBGO operates in accordance with all environmental conditions set down as conditions for grant of the leases.
		There are no known issues regarding security of tenure.
		There are no known impediments to continued operation.
		FGP
		• The Fortnum Gold Project tenure is 100% owned by Westgold through subsidiary company Aragon Resources Pty. Ltd.
		• Various Royalties apply to the package. The most pertinent being;
		» \$10/oz after first 50,000oz (capped at \$2M)- Perilya
		» State Government – 2.5% NSR
		The tenure is currently in good standing.
Exploration done by	• Acknowledgment and appraisal of exploration by	• The HGO region has an exploration and production history in excess of 30 years.
other parties	other partie	• The SKO tenements have an exploration and production history in excess of 100 years.
		• The CMGP tenements have an exploration and production history in excess of 100 years.
		• The FGP tenements have an exploration and production history in excess of 30 years.
		• Westgold work has generally confirmed the veracity of historic exploration data.

Criteria	JORC Code Explanation	Commentary
Geology	 Deposit type, geological setting and style of 	HGO
	mineralisation.	• Trident is hosted primarily within a thick, weakly differentiated gabbro with subordinate mafic and ultramafic lithologies and comprises a series of north-northeast trending, shallowly north-plunging mineralised zones. The deposit comprises two main mineralisation styles; large wallrock-hosted ore-zones comprising sigmoidal quartz tensional vein arrays and associated metasomatic wall rock alteration hosted exclusively within the gabbro;
		• and thin, lode-style, nuggetty laminated quartz veins that formed primarily at sheared lithological contacts between the various mafic and ultramafic lithologies.
		• Lake Cowan mineralisation can be separated into two types. Structurally controlled primary mineralisation in ultramafics, basalts and felsics host (e.g. Louis, Josephine and Napoleon), and saprolite / palaeochannel hosted supergene hydromorphic deposits, including Sophia, Brigitte and Atreides.
		SKO
		• HBJ:
		The HBJ lodes form part of a gold mineralised system along the Boulder-Lefroy shear zone that is over 5km long and includes the Celebration, Mutooroo, HBJ and Golden Hope open-pit and underground mines. The lodes are hosted within a steeply-dipping, north-northwest striking package of mafic, ultramafic and sedimentary rocks and schists that have been intruded by felsic to intermediate porphyries. Gold mineralisation is structurally controlled and is focused along lithological contacts, within stockwork and tensional vein arrays and within shear zones. The main mineralised zone has a length in excess of 1.9 km and an average width of 40 m in the Jubilee workings but is generally narrower to the north in the Hampton -Boulder workings.
		Mount Marion:
		• The Mount Marion deposit is located on the eastern side of the Coolgardie Domain within a flexure in the Karramindie Shear Zone. It is hosted within a sub-vertical sequence of meta- komatiites intercalated with metasediments that have been metamorphosed to amphibolite facies. Gold mineralisation occurs in a footwall and hangingwall lode, each ranging in thickness from 2 to 15m. The mineralisation plunges steeply to the west and is open at depth.
		Mount Martin:
		The Mount Martin Tribute Area, is located within a regional scale north-northwest trending Archean Greenstone Belt. Within the Mount Martin - Carnilya area, the greenstone belt comprises a mixed sequence of ultramafic (predominantly komatiitic) and fine-grained, variably sulphidic sedimentary lithologies with subsidiary mafic units. Known gold and nickel mineralisation at the Mount Martin Mine is associated with a series of stacked, westerly dipping, sulphide and quartz-carbonate bearing lodes which are mainly hosted within intensely deformed and altered chloritic schists sandwiched between talc-carbonate ultramafic lithologies.
		Pernatty:
		The Pernatty deposit is hosted within a granophyric phase of a gabbro and is controlled by a structurally complex interaction of a number of major shear zones. Shearing has altered the original granophyric quartz dolerite to a biotite-carbonate-plagioclase-pyrite schist. The sequence has also been intruded by mafic and felsic porphyritic dykes, which are also mineralised.

Criteria	JORC Code Explanation	Commentary	
		CMGP	
		• The CMGP is located in the Achaean Murchison Province, a granite-greenstone terrane ir northwest of the Yilgarn Craton. Greenstone belts trending north-northeast are separated by gragneiss domes, with smaller granite plutons also present within or on the margins of the belts.	
		• Mineralisation at Big Bell is hosted in the shear zone (Mine Sequence) and is associated with the peak metamorphic retrograde assemblages. Stibnite, native antimony and trace arsenopyrite disseminated through the K-feldspar-rich lode schist. These are intergrown with pyrite and pyrrh and chalcopyrite. Mineralisation outside the typical Big Bell host rocks (KPSH), for example 1, and Shocker, also display a very strong W-As-Sb geochemical halo.	e are hotite
		 Numerous gold deposits occur within the Cuddingwarra Project area, the majority of which hosted within the central mafic-ultramafic ± felsic porphyry sequence. Within this broad framew mineralisation is shown to be spatially controlled by competency contrasts across, and flexures a layer-parallel D2 shear zones, and is maximised when transected by corridors of northeast str D3 faults and fractures. 	work, along,
		• The Great Fingall Dolerite hosts the majority gold mineralisation within the portion of the greens belt proximal to Cue (The Day Dawn Project Area). Unit AGF3 is the most brittle of all the five and this characteristic is responsible for its role as the most favourable lithological host to mineralisation in the Greenstone Belt.	units
		FGP	
		• The Fortnum deposits are Paleoproterozoic shear-hosted gold deposits within the Fortnum We a localised thrust duplex of Narracoota Formation within the overlying Ravelstone Formation. stratigraphic formations comprise part of the Bryah Basin in the Capricorn Orogen, Western Aust	Both
		 The Horseshoe Cassidy deposits are hosted within the Ravelstone Formation (siltstone and arg and Narracoota Formation (highly-altered, moderate to strongly deformed mafic to ultramafic ro The main zone of mineralisation is developed within a horizon of highly altered magnesian ba Gold mineralisation is associated with strong vein stock works that are confined to the altered n Alteration consists of two types; stockwork proximal silica-carbonate-fuchsite-haematite-pyrite distal silica-haematite-carbonate+/- chlorite. 	ocks). asalt. nafic.
		• The Peak Hill district represents remnants of a Proterozoic fold belt comprising highly defort trough and shelf sediments and mafic / ultramafic volcanics, which are generally moder metamorphosed (except for the Peak Hill Metamorphic Suite).	

Criteria	JORC Code Explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: » easting and northing of the drill hole collar » elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar » dip and azimuth of the hole » down hole length and interception depth » hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Tables containing drillhole collar, downhole survey and intersection data are included in the body of the announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No high-grade cuts are used. Reported results contain no more than two contiguous metres of internal dilution below 1g/t. Results are reported above a variety of gram / metre cut-offs dependent upon the nature of the hole. These are cut-offs are clearly stated in the relevant tables. No metal equivalent values are stated.

Criteria	JORC Code Explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Unless indicated to the contrary, all results reported are true width. Given restricted access in the underground environment the majority of drillhole intersections are not normal to the orebody.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams are provided in the body of the release.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Appropriate balance in exploration results reporting is provided.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• There is no other substantive exploration data associated with this release.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Ongoing surface and underground exploration activities will be undertaken to support continuing mining activities at Westgold Gold Operations.

SECTION 3 ESTIMATION AND REPORTING OF MINERAL RESOURCES

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 management system stored on a secure SQL server. As new data is acquired it passes through a validation approval system designed to pick up any significant errors before the information is loaded into the master database.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Mr. Russell visits Westgold Gold Operations regularly.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 HGO Current and historical mining activities across the Higginsville region provide significant confidence in the geological interpretation of all projects. No alternative interpretations are currently considered viable. In all cases the local lithological and structural geology has been used to inform the interpretive process. All available information from drilling, underground mapping and pit mapping has been considered during interpretation. The Trident, Corona, Fairplay, Vine and Two boys deposits are all hosted within a suite of east over west thrust repeated mafic, ultramafic and sedimentary rocks. In all cases the most favourable host is of mafic composition, generally gabbro and to a lesser extent basalt. Together the deposits form what is locally referred to as the Higginsville Line of Lode, a 5km long, northnortheast striking mineralised corridor of historic and current mining operations. Steep west and shallow east have been identified as the most favourable structural orientations for mineralisation. At Chalice, multiple generations of unmineralised felsic intrusive cross cut the host amphibolite and influence both the volume and the grade, through contact remobilisation, of the mineralisation. The Resource Estimate is sensitive to the volume of unmineralised felsics within the mineralised horizon. At both Chalice and Lake Cowan there is a lack of consistent visual proxies for mineralisation, making accurate ore delineation difficult. High-grade zones within the palaeochannels are the result of a more preferential depositional environment due to changes in strike of the palaeochannel.

Criteria	JORC Code Explanation	Co	mmentary
			SKO
		•	HBJ:
			The mineralisation has been modelled focussing on the structural (shear zone) and lithological (porphyry mainly) controls. The large scale (1.9km long and ~40m wide) provides significant confidence in the geological and grade continuity within the deposit. The interpretation has used predominantly RC drilling with some DD used for the deeper parts of the resource.
			There is an alternative interpretation that could be applied to this deposit, which focuses on defining and sub-domaining higher grade mineralisation that is evident at lithological contacts.
		•	Mount Marion:
			The lithological and structural model for the Mount Marion deposit is well understood as it is supported by the knowledge gained from open-pit and underground operations.
			The mineralisation is hosted along a dilational flexure within the lode gneiss with clearly defined contact mineralisation with the surrounding ultramafic lithologies. The lithological model is used as the basis for the mineralisation interpretation and has been derived from predominantly RC and Diamond drill-holes. The confidence of the geological controls on mineralisation is consistent with the resource classification applied to the deposit. No alternative interpretations have been devised for this deposit.
		•	Mount Martin:
			Gold mineralisation at Mount Martin is associated with chlorite schists (shear zones) hosted within talc-carbonate ultramafic lithologies. Within these controlling shear zones are a series of stacked, westerly-dipping, sulphide and quartz carbonate bearing lodes which host the majority of the gold mineralisation. The geological and mineralisation interpretation used in this resource is consistent with that mined historically in the open pit. Although other interpretations have been proposed they tend to be variations on the steep westerly-dipping lodes theme adopted for this resource and as such would not represent a significant change in the contained metal.
		•	Pernatty:
			Mineralisation at Pernatty is controlled by a complex arrangement of very well-defined shear zones with the highest grade mineralisation associated with structural intersections and flexures along the three main shears. Given the consistency in orientation of the three main controlling shears, the confidence in the geological and mineralisation interpretation is deemed adequate.
			CMGP
		•	Mining has occurred since 1800's providing significant confidence in the currently geological interpretation across all projects.
		•	No alternative interpretations are currently considered viable.
		•	Geological interpretation of the deposit was carried out using a systematic approach to ensure that the resultant estimated Mineral Resource figure was both sufficiently constrained, and representative of the expected sub-surface conditions. In all aspects of resource estimation the factual and interpreted geology was used to guide the development of the interpretation.
		•	The structural regime is the dominant control on geological and grade continuity at the CMGP. Lithological factors such as rheology contrast are secondary controls on grade distribution.

Criteria	JORC Code Explanation	Commentary
		FGP
		 Low-grade stockpiles are derived from previous mining of the mineralisation styles outlined above. Geological matrixes were established to assist with interpretation and construction of the estimation domains.
		• Confidence in the interpretation is high as the geometry, geology, alteration and tenor of the mineralised zones was observed to be consistent along strike and down dip
		• The interpretations was based on 10m and 20m north-south spaced sections.
		• The information used in the construction and estimation of the respective resources mineralisation is based on Air Core (AC), Reverse Circulation (RC) and Diamond Drill (DDH) hole information. The AC was included in the poorly information estimation domains and this was considered during the classification of these domains.
		• Oxidation surfaces were constructed from the logged information on 20m north south sections.
Dimensions	• The extent and variability of the Mineral Resource	
	expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	
	tower timits of the Mineral Resource.	• Chalice mineralisation has been defined over a strike length of 700m, a lateral extent of 200m and a depth of 650m.
		• The Lake Cowan resource has been defined over a strike length of >1.5Km, a lateral extent of >500m and to a depth of >150m.
		• SKO
		• The HBJ deposit extends over 5km of strike (includes the Golden Hope and Mutooroo lodes) and up to 650m below surface with the individual lodes being up to 40m wide.
		• Mount Marion mineralisation extends to just under 1km in strike length, 800m in depth with the lodes varying in width from 3 – 15m. The mineralisation is steeply plunging resulting in a very small surface expression of the lodes.
		• The Mount Martin deposit has a strike length of 1km, a vertical extent of 350m, with the individual, shallow west-south-westerly dipping lodes varying between 2 – 10m true thickness. These lodes make up a mineralised package of ~300m true thickness (hangingwall to footwall).
		• The Pernatty deposit has a strike extent of 500m, 400m dip extent and up to 300m in lateral extent. The individual lodes are of varying orientations and are generally between 2 – 15m wide.
		CMGP
		Individual deposit scales vary across the CMGP.
		• The Big Bell Trend is mineralised a strike length of >3,900m, a lateral extent of up +50m and a depth of over 1,500m.
		• Great Fingall is mineralised a strike length of >500m, a lateral extent of >600m and a depth of over 800m.
		• Black Swan South is mineralised a strike length of >1,700m, a lateral extent of up +75m and a depth of over 300m.

Criteria	JORC Code Explanation	Commentary
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 HGO For Trident, Chalice, Two Boys, Vine and Lake Cowan the modelling and estimation work was undertaken by Alacer Gold and carried out in Vulcan 3D mining software. For Alacer Gold estimates the drill hole data to be used in the process was first validated. The initial interpretation was then completed on 1:250 scale hardcopy cross sections, long sections and level plans, this interpretation was then validated by either the senior geologists or the Chief Geologist before then being digitised into the Vulcan 3D modelling package. The digitised polygons form the basis of the three dimensional orebody wireframe. Wireframing is then carried out using a combination of automated stitching algorithms and manual triangulation to create an accurate three dimensional representation of the sub-surface mineralised body.

Criteria	JORC Code Explanation	Commentary
		• No by-products or deleterious elements are estimated. No assumptions have been made about the correlation between variables.
		• The estimation is validated using the following: a visual interrogation, a comparison of the mean composite grade to the mean block grade for each domain, a comparison of the wireframe volume to the block volume for each domain, Grade trend plots (moving window statistics), comparison to the previous resource estimate.
		• The resource is then depleted for mining voids and subsequently classified in line with JORC guidelines utilising a combination of various estimation derived parameters and geological / mining knowledge.
		• Production reconciliation data is regularly used to check the performance of the estimate and to adjust parameters is necessary. Good reconciliation between mine claimed figures and milled figures is routinely achieved.
		SKO
		• The HBJ mineral resource estimate was undertaken in December 2011 by Widenbar and Associates Pty Ltd. The grade interpolation method used was Ordinary Kriging (OK) in the Datamine ESTIMA process – a method that is appropriate for the style of mineralisation being estimated. A simple unfolding process has been applied to the data and model blocks in order to simplify the setup of search ellipses and allow searches to follow the varying dip and strike of the various domains.
		• Geological, mining as-built and mineralisation domains and a valid drillhole database were supplied by SKO personnel. The geological and mineralisation domains were used to control the interpolation as hard boundaries (mineralisation domains) and for the application of bulk density data (geological boundaries).
		• The Mineral Resource estimates for Mount Marion, Mount Martin and Pernatty were undertaken by Alacer Gold in September 2011. The geological and mineralisation wireframes as well as the grade interpolation was undertaken in Vulcan 8.04 3-D modelling software with statistical analysis undertaken using Snowden Supervisor software. The interpolation method used was Ordinary Kriging (OK) – a method that is appropriate for the styles of mineralisation being estimated.
		• Statistical analysis was undertaken to determine the composite length (1m) and for the application of top-cuts.
		• The search ellipses applied were based on a combination of drillhole spacing and variographic analysis. Various minimum and maximum samples were used in the first search with a maximum of four samples per drill-hole allowed. Several passes were used each with increasing search ellipse sizes, all the blocks in the mineralised domains were informed in the first pass.
		• The block model was depleted using surfaces / domains generated by the SKO Survey. Validation of the models was completed by visual inspection, statistical comparisons and comparison with reconciliation data, with the final model achieving a satisfactory validation.
		No deleterious elements were estimated as they are considered not material.

Criteria	JORC Code Explanation	Comm	nentary
		С	CMGP
			All modelling and estimation work undertaken by Westgold is carried out in three dimensions via Surpac Vision.
		u th a	After validating the drillhole data to be used in the estimation, interpretation of the orebody is undertaken in sectional and / or plan view to create the outline strings which form the basis of he three dimensional orebody wireframe. Wireframing is then carried out using a combination of automated stitching algorithms and manual triangulation to create an accurate three dimensional representation of the sub-surface mineralised body.
		fl	Drillhole intersections within the mineralised body are defined, these intersections are then used to lag the appropriate sections of the drillhole database tables for compositing purposes. Drillholes are subsequently composited to allow for grade estimation. In all aspects of resource estimation the factual and interpreted geology was used to guide the development of the interpretation.
		d is w	Once the sample data has been composited, a statistical analysis is undertaken to assist with determining estimation search parameters, top-cuts etc. Variographic analysis of individual domains s undertaken to assist with determining appropriate search parameters. Which are then incorporated with observed geological and geometrical features to determine the most appropriate search parameters.
		bi pi tł	An empty block model is then created for the area of interest. This model contains attributes set at background values for the various elements of interest as well as density, and various estimation barameters that are subsequently used to assist in resource categorisation. The block sizes used in he model will vary depending on orebody geometry, minimum mining units, estimation parameters and levels of informing data available.
		st u B re	Grade estimation is then undertaken, with ordinary kriging estimation method is considered as standard, although in some circumstances where sample populations are small, or domains are unable to be accurately defined, inverse distance weighting estimation techniques will be used. Both by-product and deleterious elements are estimated at the time of primary grade estimation if required. It is assumed that by-products correlate well with gold. There are no assumptions made about the recovery of by-products.
			The resource is then depleted for mining voids and subsequently classified in line with JORC guidelines utilising a combination of various estimation derived parameters and geological / mining knowledge.
		• T	This approach has proven to be applicable to Westgold's gold assets.
			Estimation results are routinely validated against primary input data, previous estimates and mining butput.
			Good reconciliation between mine claimed figures and milled figures was routinely achieved during past production history.

Criteria	JORC Code Explanation	Con	nmentary
			FGP
		•	All modelling and estimation work undertaken by Westgold is carried out in three dimensions with Surpac Vision, Snowden's Supervisor v8.3 and or Isatis 2015.
		•	Ordinary kriging (OK) and Localised Indicator Kriging (LIK) has been used. LIK was used for the estimation of all Jasperoid related estimation domains due to mosaic mineralisation style. Length weighting of assay values related to surveyed volumes was undertaken for low-grade stockpiles.
		•	All estimates were validated where possible against historical production records and previous estimates.
		•	After validating the drillhole data to be used in the estimation, interpretation of the orebody is undertaken in sectional and / or plan view to create the outline strings which form the basis of the three dimensional orebody wireframe. Wireframing was carried out using a combination of automated stitching algorithms and manual triangulation to create an accurate three dimensional representation of the sub-surface mineralised body. Domaining was constructed on 20m and 10m spaced sections and was based on logged lithologies, quartz percentage and gold value.
		•	Drillhole intersections within the mineralised body are defined; these intersections are then used to flag the appropriate sections of the drillhole database tables for compositing purposes. Assay data was composited to 1m downhole using Surpac "best fit" algorithm. The "best fit" algorithm eliminates residual composites and the estimation domains boundaries defined the start and end position of the compositing routine. In all aspects of resource estimation; the factual and interpreted geology was used to guide the development of the interpretation.
		•	Support analysis of the difference drill types (Air Core (AC), Reverse Circulation (RC) and Diamond Drill holes (DDH)) was performed and the mixing these deemed acceptable. The AC drill holes were used in the estimation of the poorly informed estimation domains.
		•	Statistical analysis was carried out on the composited data to assist with determining estimation search parameters, top-cuts and spatial continuity. Data for some of the domains exhibit an increased degree of skewness and top-cuts were applied to reduce the skewness of distribution. The appropriateness of the top-cuts was assessed for each domain utilising log-probability plots, mean and variance plots, histograms and univariate statistics for the composite Au variable.
			Variogram modelling was undertaken using Isatis [™] software and defined the spatial continuity of gold within all domains and these parameters were used for the interpolation process. Indicator variograms were generated within the Jasperoid related estimation domains to the used in the LIK estimation process.
		•	Volume models were generated in Surpac using topographic surfaces, oxidation surfaces and mineralised zone wireframes as constraints.
		•	Quantitative Kriging Neighbourhood Analysis was used optimise the search parameters.

Criteria	JORC Code Explanation	Commentary
		• Search ellipses were aligned parallel to the maximum continuity defined during the variographic analysis. The search dimensions, generally, approximated the ranges of the interpreted variograms and ranged from 50 to 100m. The minimum and maximum number of samples range from 7 to 11 and 18 to 30, respectively. Second and third pass searches were implement to fill the un-estimated cells / blocks if they were not estimated during the first search pass and these search parameters involved increasing in the search distances and reducing in the minimum number of samples used in the estimation process.
		• The extrapolation was control through the interpreted estimation domains, which was limited to half the drill hole spacing within section and half the section spacing between sections.
		• Block estimation for gold was undertaken using Isatis [™] and hard boundaries were used between domains for estimation of gold grade.
		• No assumptions were made about recovery during the OK and LIK estimation processes.
		• Grade estimation was undertaken, with the ordinary kriging (OK) estimation method for all non- jasperoid related estimation domains.
		 Check estimates were run using Localised Uniform Conditioning (LUC) for the LIK estimation domains, which produces a similar form of result to LIK. The LIK and LUC models were compared, with reasonable agreement at lower cut-offs and differences at higher cut-offs reflecting higher estimated gold variability in the LIK model. The LIK is believed to be better suited to the style of mineralisation for the Jasperoid related estimation domains.
		• The estimation is validated using the following: a visual interrogation, a comparison of the mean composite grade to the mean block grade for each domain, a comparison of the wireframe volume to the block volume for each domain, grade trend plots (moving window statistics), comparison to the previous resource estimate.
		• The only element of economic interest modelled is gold.
		• The Isatis [™] block models were transferred and imported to Surpac Mining Software. The transfer and importing process was validated against the Isatis [™] block model. The resource was then depleted for mining voids and subsequently classified in line with JORC guidelines utilising a combination of various estimation derived parameters and geological / mining knowledge.
Moisture	Whether the tonnages are estimated on a d basis or with natural moisture, and the method determination of the moisture content.	
Cut-off parameters	• The basis of the adopted cut-off grade(s) or qual parameters applied.	ty • The cut off grades used for the reporting of the Mineral Resources have been selected based on the style of mineralisation, depth from surface of the mineralisation and the most probable extraction technique.

Criteria	JORC Code Explanation	Commentary
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 HGO The principle extraction method at Trident is. For the narrow vein systems at Trident bench stoping is employed. SKO The Pernatty, Mount Martin and upper portions of the HBJ deposits are assumed to be amenable to open pit mining processes. A minimum mining width of 2.5m (horizontal) is applied to the lodes. The lower parts of the HBJ deposit are assumed to be mineable via sub-level open stoping or sub-level caving. The Mount Marion deposit is assumed to be amenable to underground mining via open stoping means which is consistent with the mining practices adopted for the Mount Marion deposit. CMGP Variable by deposit. FGP Conventional open cut mining with 120t class hydraulic backhoe excavators and 90t rigid dump trucks. 2m minimum mining width has been assumed. No mining dilution or ore loss has been modelled in the resource model or applied to the reported Mineral Resource.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 HGO Metallurgical test work is carried out on a project by project basis. The Higginsville plant is approximately 5.5 years old and routinely averages over 96% recovery when being fed with Trident material. SKO The majority of the SKO resource base comprises deposits that have some level of mining history and hence established metallurgical properties. CMGP Not considered for Mineral Resource. Applied during the Reserve generation process. FGP Horizons were modelled based on oxidation state of the host rocks, taken from the drilling information. These were: transported and lateritic residuum, oxidised, transitional and fresh. Jasperoid was flagged in the model due to its hardness and differing heap leach characteristics as identified in recent metallurgical scoping studies.

Criteria	JORC Code Explanation	Commentary
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 For underground operations. Process water is pumped 30 km from the Chalice open pit to the Aphrodites pit from which it is stored prior to pumping to the process mill Potable water is pumped from the Coolgardie–Norseman water pipe line and is provided by the state water provider.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	• For Trident bulk densities were assessed via test work and assigned to the model. Samples were selected to cover the full range of lithology types and ore types across the deposit. Individual unbroken half core samples of approximately 30cm length were randomly selected from within specified metre intervals. Samples were sent to the Genalysis Laboratory in Kalgoorlie, where mass and volumes (by water immersion) were measured and bulk density calculated.

Criteria	JORC Code Explanation	Commentary	
		 CMGP Bulk density of the mineralisation at the CMGP is variable and is for the most part lithology rat than mineralisation dependent. Bulk density sampling is undertaken via assessments of drill c and grab samples. A significant past mining history has validated the assumptions made surrounding bulk density at CMGP. FGP 	ore
		 A large suite of bulk density determinations have been carried out across the project area. The b densities were separated into different weathering domains and lithological domains (i.e. jasper domains). Density determinations were made on diamond drill core representing mineralisat utilised the water immersion method (Archimedes Principle). 	oid
Classification	• The basis for the classification of the Mineral Resources into varying confidence categories.	 Resources are classified in line with JORC guidelines utilising a combination of various estimat derived parameters, input data and geological / mining knowledge. 	ion
	• Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	• This approach considers all relevant factors and reflects the Competent Person's view of the depo	sit
	• Whether the result appropriately reflects the Competent Person's view of the deposit.		
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	 Resource estimates are peer reviewed by the Corporate technical team. No external reviews have been undertaken. 	

Criteria	JORC Code Explanation	Commentary
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	and local scale.

SECTION 4 ESTIMATION AND REPORTING OF ORE RESERVES

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

Criteria	JORC Code Explanation	Commentary	
Mineral Resource estimate for conversion to Ore Reserves	 Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve. Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves. 	or Measured Resource. Indicated Resources are only upgraded to Probable Reserves after adding appropriate modifying factors. Some Measured Resource may be classified as Proven Reserves and	
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 		

Criteria	JORC Code Explanation	Commentary
Study status	 The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. The Code requires that a study to at least Pre- Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered 	 HGO Mining is in progress at HGO. The Trident Underground mine began production in late 2008. The mining methodology, design layouts, production performance, mining modifying factors and cost profiles used in the 2015 Mineral Reserve are therefore reflective of this history. Underground mining costs have been derived from the current Australian Contract Mining (ACM) rates
		 FGP The Fortnum Gold Mine Operation ceased production in May 2007 when owned by Gleneagle Gold. Previous to this the operation was operated by Perilya and Homestake, and first began commercial mining operations in the late 1980's. Extensive mining and processing records are therefore available in each of the deposits. Various open pit styles and host domains have been mined since discovery of the area by Homestake in 1980's. Mining during this time has ranged from open pit cut backs, virgin surface excavations to extensional underground developments. The Fortnum Gold Mine Open Pit and Underground inventory had a Pre-feasibility study completed by MLX in early 2016. Additional cost details, operational constraints and a revision of the Resources (with classification) have continued since this initial financial evaluation. A Feasibility Study was completed on these revisions and therefore forms the basis for this Reserve statement. The Fortnum Gold Mine is now at a budgetary level analysis with specific details on processing components and reagent costs, specific mining contractor cost profiles, contractual haulage costs, power provider unit rates as well as site specific G&A

Criteria	JORC Code Explanation	Commentary
Cut-off parameters	 The basis of the cut-off grade(s) or quality parameters applied. 	 Underground Mines - Cut off grades were determined for the various mining methods and various mining sections in the mines. The COG's have been applied to both development and stope production from their respective areas. Open Pit Mines - The pit rim cut-off grade (COG) was determined as part of the Reserve estimation. The pit rim COG determines which material will be processed by equating the operating cost of processing and selling to the value of the mining block in terms of recovered metal and the expected selling price. The COG is then used to determine whether or not a mining block should be delivered to the treatment plant for processing, stockpiled as low-grade or taken to the waste dump as waste.
Mining factors or assumptions	 The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design). The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc. The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade control and pre-production drilling. The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate). The mining dilution factors used. Any minimum mining widths used. The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion. The infrastructure requirements of the selected mining methods. 	 Ore Reserves have been undertaken on a 'bottom up' process – with the physicals reflecting mine designs rather than Resource conversion factors or Whittle optimisations. HGO Mining methodologies for underground Reserves centre on long hole open stoping. However, there are areas which are designed as narrow vein up hole or flat bench stoping. All methods described in the Reserve have either been trialled successfully and/or implemented historically. The stope design parameters take into account the different mining shapes and are based on specific geology and geotechnical domains associated with those areas. Stope shapes, level layouts and extraction sequences are designed cognisant of local and regional ground conditions. Where deteriorating ground conditions are expected or where significant fault planes run adjacent to mineralisation, stope shapes are altered to encompass these conditions and sequenced early to ensure recovery is possible. Dilution factors vary pending the orebody style and host rock conditions as well as from mining sequence and development layouts.

Criteria	JORC Code Explanation	Commentary
		• With the implementation of paste filling at Trident and the utilisation of remote loaders with telecabins, a 100% mining recovery factor is applied to the stope physicals.
		No Inferred resources are included with the Reserve Statement.
		• Both underground mines are established production centres and have been in operation for several years. Mining methodologies forecasted in the Reserve are those currently being utilised.
		• Conventional open pit mining methodologies and sequencing have been applied to open pits.
		• A 6% dilution factor has been applied to Louis Reserve.
		• Louis has a 95% mining recovery factor.
		• Wall angles used in the Louis Pit are reflective of the historical parameters used.
		• Lake Cowan has pre-existing haulage routes and site earthworks. Re-establishment of the haulage route into Higginsville has been costed as is included within the economic analysis.
		SKO
		• Pit and underground reserves have all been subject to detailed mine design.
		• Stockpile resources have been converted to reserves by application of appropriate modifying factors.
		Feasibility Evaluations have incorporated dewatering requirements.
		• Open Pit geotechnical parameters have been supplied by Geotechnical Consultant following site inspection.
		• Open Pits have been designed to ensure a minimum 25m bench width.
		CMGP
		• Pit and underground reserves have all been subject to detailed mine design.
		• Stockpile resources have been converted to reserves by application of appropriate modifying factors.
		• Feasibility Evaluations have incorporated dewatering requirements.
		• Open Pit geotechnical parameters have been supplied by Geotechnical Consultant following site inspection.
		Open Pits have been designed to ensure a minimum 25m bench width. FGP
		Open Pit Methodology.
		 Following consideration of the various modifying factors the following rules were applied to the reserve estimation process for the conversion of measured and indicated resource to reserve for suitable evaluation.
		• The mining shape in the reserve estimation is generated by a wireframe (geology interpretation of the ore zone) which overlays the block model. Where the wire frame cuts the primary block, sub blocks fill out the remaining space to the wire frame boundary (effectively the mining shape). It is reasonable to assume that the mining method can selectively mine to the wire frame boundary with the additional dilution provision stated in point 4 below.

Criteria	JORC Code Explanation	Commentary
		• Ore Reserves are based on Pit shape designs – with appropriate modifications to the original Whittle Shell outlines to ensure compliance with practical mining parameters.
		• Geotechnical parameters allied to the Open Pit Reserves are either based on observed existing pit shape specifics or domain specific expectations / assumptions. Various geotechnical reports and retrospective reconciliations were considered in the 2016 design parameters. A majority of the open pits have a final design wall angle of 38-420, which is seen as conservative.
		• Dilution of the ore through the mining process has been accounted for within the Reserve quoted inventory. Various dilution ratios are used to represent the style of mineralization. Where continuous, consistent ore boundaries and grade represent the mineralised system the following factors are applied: oxide 15%, transitional 17% and fresh 19%. In circumstances where the orebody is less homogenous above the COG then the following dilution factors are applied in order to model correctly the inherent variability of extracting discrete sections of the pit floor: oxide 17%, transitional 19% and fresh 21%. To ensure clarity, the following percentages are additional ore mined in relation to excavating the wire frame boundary as identified in point 1 above, albeit at a grade of 0.0 g/t. The amount of dilution is considered appropriate based on orebody geometry, historical mining performance and the size of mining equipment to be used to extract ore.
		• Expected mining recovery of the ore has been set at 93%.
		• Minimum Mining widths have been accounted for in the designs, with the utilization of 90T trucking parameters.
		• No specific ground support requirements are needed outside of suitable pit slope design criteria based on specific geotechnical domains.
		• Mining sequence is included in the mine scheduling process for determining the economic evaluation and takes into account available operating time and mining equipment size and performance.
		• No Inferred material is included within the open pit statement, though in various pit shapes inferred material is present. In these situations this inferred material is classified as waste.
		Underground Methodology.
		• All Underground Reserves are based on 3D design strings and polygon derived stope shapes following the Measured and Indicated Resource (in areas above the COG). A complete mine schedule is then derived from this design to create a LOM plan and financial analysis.
		• Mining methodology is based on previous mining experience. All mining systems within the Reserve statement are standardized, mechanized Western Australian methods.
		• In large disseminated orebodies a sub level open stoping or single level bench stoping production methodology is used.
		• In narrow vein laminated quartz hosted domains a conservative narrow bench style mining method is used.
		• In narrow flat dipping deposits a Flat Long Hole process is adopted (with fillets in the footwall for rill angle) and or Jumbo stoping.

Criteria	JORC Code Explanation	Commentary	
		• Stope shape parameters have been based on historical data (where possible) or expected stable hydraulic radius dimensions.	
		• Stope inventories have been determined by cutting the geological wireframe at above the area specific COG and applying mining dilution and ore loss factors. The ore loss ratio accounts for pillar locations between the stopes (not operational ore loss) whilst dilution allows for conversion of the geological wireframe into a minable shape as well as hangingwall relaxation. A 20% dilution factor and 10% loss ratio has been subsequently applied to the Starlight Reserve statement.	
		 Minimum mining widths have been applied in the various mining methods. The only production style relevant to this constraint is 'narrow stoping' – where the minimum width is set at 1.5m in an 18.5m sub level interval. 	
		• Mining operational recovery for the underground mines is set at 100% due to the use of remote loading units as well as paste filling activities.	
		 Stope shape dimensions vary between the various methods. Default hydraulic radii are applied to each method, and are derived either from historical production or geotechnical reports / recommendations. Where no data or exposure is available conservative HR values are used based on the contact domain type. 	
		• Mining sequence is included in the mine scheduling process for determining the economic evaluation and takes into account available operating time and mining equipment size and performance.	
Metallurgical factors or		HGO	
assumptions		appropriateness of that process to the style of mineralisation.	in Leach. The Higginsville plant has operated since 2008 and historical recoveries on Trident ore
		average 97%	
	• The nature, amount and representativeness of	 Treatment of ore is via conventional gravity recovery / intensive cyanidation and CIL is applied as industry standard technology. 	
	metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors	 Additional test-work is instigated where notable changes to geology and mineralogy are identified. Small scale batch leach tests on primary Louis ore have indicated lower recoveries (80%) associated with finer gold and sulphide mineralisation. 	
	 applied. Any assumptions or allowances made for deleterious elements. 	 There have been no major examples of deleterious elements affecting gold extraction levels or bullion quality. Some minor variations in sulphide mineralogy have had short-term impacts on reagent consumptions. 	
	 The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole. 	 No bulk sample testing is required whilst geology/mineralogy is consistent based on treatment plant performance. SKO 	
	 For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications? 	• A long history of processing through the existing facility demonstrates the appropriateness of the process to the styles of mineralisation considered.	
		• No deleterious elements are considered, as a long history of processing has shown this to be not a material concern.	

Criteria	JORC Code Explanation	Com	imentary
			CMGP
			A long history of processing through the existing facility demonstrates the appropriateness of the process to the styles of mineralisation considered.
			No deleterious elements are considered, as a long history of processing has shown this to be not a material concern.
			FGP
			Fortnum Gold Mine has an existing conventional CIL processing plant – which has been operational in various periods since the late 1980's. The plant has a nameplate capacity of 1.0Mtpa though this can be varied between 0.8-1.2Mtpa pending rosters and material type.
		•	Grind size for the sulphide material has historically been 130 μ m.
			An extensive database of historical CIL recoveries as well as detailed metallurgical test work is available for the various deposits and these have been incorporated into the COG analysis and financial models.
		•	For the 2016 Reserve, Plant recoveries of 93-95% have been utilised.
Environmental		•	HGO The Higginsville mine operates under and in compliance with a number of operating environmental plans, which cover its environmental impacts and outputs.
			Waste is generally stored underground in mined out stopes. When underground stopes are not available, waste is placed on approved surface waste dumps or capping material for historical tailings dams.
			Waste rock created from the Open Pit operations is stored alongside the pit crest. SKO
			SKO operates under and in compliance with a number of operating environmental plans, which cover its environmental impacts and outputs.
			CMGP
			CMGP operates under and in compliance with a number of operating environmental plans, which cover its environmental impacts and outputs.
			FGP
		•	The FGP has normal Western Australian permitting requirements.

Criteria	JORC Code Explanation	Commentary
Infrastructure	The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed.	 HGO Trident is currently active and have substantial infrastructure in place including a large amount of underground infrastructure, major electrical, ventilation and pumping networks. The main Higginsville location has an operating CIL plant a fully equipped laboratory, extensive workshop, administration
Costs	 The derivation of, or assumptions made, regarding projected capital costs in the study. The methodology used to estimate operating costs. Allowances made for the content of deleterious elements. The source of exchange rates used in the study. Derivation of transportation charges. The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. The allowances made for royalties payable, both Government and private. 	 Underground Mines Capital Development costs are derived from the current contractor cost model (ACM). CAPEX Infrastructure costs have been sourced either from specific quotes or historical invoices. Operating costs are derived primarily from the current contractor cost profile (ACM). In areas where works are outside of ACM's scope, alterative contractor costs have been sourced. <i>Open Pit Mine</i> CAPEX has been sourced from a specific quote (Dec 2013). Operating costs associated with the pit operation are based on schedule of rates from various Kalgoorlie based contractors. These costs are in line with previous pit operations in both SKO and

Criteria	JORC Code Explanation	Commentary
		Surface and Plant
		• The HGO Plant costs are derived from historical cost profiles, with updates from recent consumable negotiations.
		• Fuel and potable water rates are reflective of current market conditions.
		• Site Administration and Manning costs are reflective of current conditions.
		Royalties
		All private and state royalties have been incorporated into the Reserve cost model. SK0
		Processing costs are based on actual cost profiles, as are administrative costs.
		Both state government and private royalties are incorporated into costings as appropriate.
		• Mining costs are derived primarily from the current contractor cost profiles in both the open pit and underground environment.
		CMGP
		Capital Costs were estimated as part of the DFS.
		Operating Costs were estimated as part of the DFS.
		• WA State Government 2.5% applies.
		• \$5 per oz produced Royalty applies to Great Fingall Deeps.
		FGP
		• Open Pit Mining costs have been sourced from MLX CMGP operations whereby several contracting companies are undertaking mining works. These costs include pit load and haul as well as drill and blast, dewatering and maintenance. The costs are based on recent tender submissions (early 2016) for the CMGP which is located 200km south of the Fortnum Gold Mine.
		• Underground mining costs used within the Reserve process are derived from existing operational UG mines within the Kalgoorlie and Meekatharra district. They are based on current contractual schedule of rates for all mining processes covered in this Reserve statement.
		• Additional to direct mining costs, surface haulage is based on recent 2016 request for quotation. Where specific tkm rates are not available, a default value of \$0.10-0.15 /tkm has been used.
		• Processing costs are based on the 2016 Feasibility profile. These costs are in line with previous operating conditions and are aligned to the cost profile seen in MLX's neighbouring operation of CMGP.
		• Royalties applicable to the open pit, underground and stockpile inventory vary pending tenement, though a summary of these are:
		» \$10/oz after first 50,000oz (capped at \$2M)- Perilya
		» 1% NRS - Montezuma
		» State Government – 2.5% NSR

Criteria	JORC Code Explanation	Commentary
Revenue factors	 The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products. 	• No allowance is made for silver by-products.
Market assessment	 The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. A customer and competitor analysis along with the identification of likely market windows for the product. Price and volume forecasts and the basis for these forecasts. For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract. 	 and applied in the estimation of revenue, cut-off grade analysis and future mine planning decisions. There remains strong demand and no apparent risk to the long term demand for the gold.
Economic	 The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs. 	• The Higginsville NPV assumes a 10% discount rate with no inflation. Mining costs derived from contract rates, Paste Plant costs as per cubes required at a historical A\$/m3, G&A costs on a cost per tonne basis and processing cost based on actual cost profiles.
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	

Criteria	JORC Code Explanation	Commentary
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent. 	 SK0 SK0 is fully permitted and a major contributor to the local and regional economy. It has no external pressures that impact its operation or which could potentially jeopardise its continuous operation. As new open pits or underground operations develop the site will require separate environmental approvals from the different regulating bodies. CMGP The CMGP is progressing through environmental and other regulatory permitting. FGP No negative social impacts noted. Local stakeholders have been consulted regarding MLX plan for the Fortnum Gold Mine. MLX continues to work with local governments, business owners and residence around the Fortnum Gold Mine. HGO is an active mining project. SK0 is an active mining project. FGP is a development project.
Classification	 The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any). 	Measured Resources have a high level of confidence and are generally defined in three dimensions and have been accurately defined or capitally and normally developed. Indicated resources have a slightly lower level of confidence but contain substantial drilling and are in most instances capitally developed or well defined from a mining perspective. Inferred resources always contain significant geological evidence of evistance and are drilled, but not to the came density. There is no classification

Criteria	JORC Code Explanation	Commentary
Audits or reviews	• The results of any audits or reviews of Ore Reserve estimates.	• Site generated reserves and the parent data and economic evaluation data is routinely reviewed by the Westgold Corporate technical team.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage. It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 HGO Trident reserves are reflective of current operating practices and mine planning processes. All currently reported reserve calculations are considered representative on a local scale. Regular mine reconciliations occur to validate and test the accuracy of the estimates at Trident. A comprehensive production history confirms the validity of the Trident reserve. Reserve calculations for open pits are cognisant of the historical geological, geotechnical and mining data. Confidence in the Reserve is further achieved with the validation of historical production data and observation of structural orientations on the existing pit walls. SKO All currently reported reserve calculations are considered representative on a local scale. Regular mine reconciliations occur to validate and test the accuracy of the estimates at SKO. CMGP The ore reserve has been completed to a DFS standard and benchmarked against local site historical production and experience, hence confidence in the estimates is high. FGP Various sensitivity analyses have been undertaken on the 2016 Reserve models in order to understand and subsequently control risk.